Association of diameter and wall stresses of tricuspid aortic valve ascending thoracic aortic aneurysms

J Thorac Cardiovasc Surg. 2022 Nov;164(5):1365-1375. doi: 10.1016/j.jtcvs.2021.05.049. Epub 2021 Jun 30.

Abstract

Objective: Ascending thoracic aortic aneurysms carry a risk of acute type A dissection. Elective repair guidelines are designed around size thresholds, but the 1-dimensional parameter of maximum diameter cannot predict acute events in small aneurysms. Biomechanically, dissection can occur when wall stress exceeds strength. Patient-specific ascending thoracic aortic aneurysm wall stresses may be a better predictor of dissection. Our aim was to compare wall stresses in tricuspid aortic valve-associated ascending thoracic aortic aneurysms based on diameter.

Methods: Patients with tricuspid aortic valve-associated ascending thoracic aortic aneurysm and diameter 4.0 cm or greater (n = 221) were divided into groups by 0.5-cm diameter increments. Three-dimensional geometries were reconstructed from computed tomography images, and finite element models were developed taking into account prestress geometries. A fiber-embedded hyperelastic material model was applied to obtain longitudinal and circumferential wall stress distributions under systolic pressure. Median stresses with interquartile ranges were determined. The Kruskal-Wallis test was used for comparisons between size groups.

Results: Peak longitudinal wall stresses for tricuspid aortic valve-associated ascending thoracic aortic aneurysm were 290 (265-323) kPa for size 4.0 to 4.4 cm versus 330 (296-359) kPa for 4.5 to 4.9 cm versus 339 (320-373) kPa for 5.0 to 5.4 cm versus 318 (293-351) kPa for 5.5 to 5.9 cm versus 373 (363-449) kPa for 6.0 cm or greater (P = 8.7e-8). Peak circumferential wall stresses were 460 (421-543) kPa for size 4.0 to 4.4 cm versus 503 (453-569) kPa for 4.5 to 4.9 cm versus 549 (430-588) kPa for 5.0 to 5.4 cm versus 540 (471-608) kPa for 5.5 to 5.9 cm versus 596 (506-649) kPa for 6.0 cm or greater (P = .0007).

Conclusions: Circumferential and longitudinal wall stresses are higher as diameter increases, but size groups had large overlap of stress ranges. Wall stress thresholds based on aneurysm wall strength may be a better predictor of patient-specific risk of dissection than diameter in small ascending thoracic aortic aneurysms.

Keywords: ascending thoracic aortic aneurysms; finite element analysis; tricuspid aortic valve.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aorta
  • Aortic Aneurysm, Thoracic* / diagnostic imaging
  • Aortic Aneurysm, Thoracic* / etiology
  • Aortic Aneurysm, Thoracic* / surgery
  • Aortic Valve / diagnostic imaging
  • Aortic Valve / surgery
  • Humans
  • Tricuspid Valve / diagnostic imaging