The implications of magnetic resonance angiography artifacts caused by different types of intracranial flow diverters

J Cardiovasc Magn Reson. 2021 Jun 7;23(1):69. doi: 10.1186/s12968-021-00753-0.

Abstract

Background: Serial cerebral angiographic imaging is necessary to ensure cerebral aneurysm occlusion after flow diverter placement. Time-of-flight (TOF)-magnetic resonance angiography (MRA) is used for this purpose due to its lack of radiation, contrast media and complications. The comparative diagnostic yield of TOF-MRA for different flow diverters has not been previously analyzed.

Purpose: To evaluate the diagnostic accuracy of TOF-MRA in cerebral aneurysms treated w divertersith different flow diverters.

Materials and methods: Flow-diverted patients whose cerebral follow-up MRA and digital subtraction angiograms (DSA) were obtained within 6 weeks were retrospectively identified. The DSA (as gold standard) and MRA images of these patients were compared by two readers (blinded to both patient data and endovascular procedure data) for residual aneurysms and the status of the parent artery for each type of flow diverter. In a second group of patients, magnetic susceptibility artifacts were manually measured and compared for different FDs.

Results: Seventy-six patients (85 aneurysms) were included in group one, and 86 patients (95 aneurysms) were included in group 2. TOF-MRA and DSA showed almost perfect agreement for residual aneurysms (κ = 0.88, p < 0.001) (positive predictive value (PPV) = 1.00, specificity = 1.00, negative predictive value (NPV) = 0.89, sensitivity = 0.89). Intermodality agreement (κ = 0.97 vs. κ = 0.74, p < 0.005) and sensitivity (0.97 vs. 0.77, NPV: 0.96 vs. 0.77) were highest with nitinol stents. MRA and DSA showed no agreement for occluded or stenotic parent vessels (κ = 0.13, p = 0.015, specificity = 0.44, NPV = 1.00, sensitivity = 1.00). Specificity was lower in chromium-cobalt based FDs than in nitinol devices (specificity = 0.08 vs. 0.60). Chromium-cobalt stents generated the largest artifacts (p < 0.005). The size of the device-related artifact, in millimeters, increased in respective order, for the Silk, Derivo, Pipeline and Surpass devices.

Conclusion: Unlike DSA, TOF-MRA is susceptible to dissimilarities between flow diverters. MRA is not well-suited for research studies comparing different flow diverters. Nitinol FDs appear to be advantageous for TOF-MRA follow-up so as not to miss small aneurysm remnants or clinically relevant parent artery stenosis.

Keywords: Aneurysm; Angiography; Artifact; Flow diverter; Time of Flight.

MeSH terms

  • Angiography, Digital Subtraction
  • Artifacts*
  • Cerebral Angiography
  • Embolization, Therapeutic*
  • Follow-Up Studies
  • Humans
  • Magnetic Resonance Angiography
  • Predictive Value of Tests
  • Retrospective Studies
  • Treatment Outcome