Skip to main content

Advertisement

Log in

Non-aortic cardiovascular disease in Marfan syndrome: a nationwide epidemiological study

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Objectives

Studies indicate that other cardiovascular problems than aortic disease are a burden for patients with Marfan syndrome (MFS). The aim of the study was to assess the extent of this issue.

Methods

A registry-based population study of patients with a Ghent II verified MFS diagnosis. Each patient was matched with up to 100 controls on age and sex. From the Danish healthcare system, we identified 407 MFS patients (from 1977 to 2014) and their cardiovascular events and compared them with those in 40,700 controls. Total follow-up time was 16,439 person years.

Results

Mitral valve disease was significantly more common in MFS [HR: 58.9 (CI 38.1–91.1)] and happened earlier and more often in women than men with MFS [age at first registration: 22 vs. 38 years, HR: 2.1 (CI 1.0–4.4)]. Heart failure/cardiomyopathy was also more common in MFS [HR: 8.7 (CI 5.7–13.4)] and men were more affected than women, and at younger age [39 vs. 64 years, HR: 0.18 (CI 0.06–0.55)].

In all cases, atrioventricular block [HR: 4.9 (1.5–15.6)] was related to heart surgery. Supraventricular [HR: 9.7 (CI 7.5–12.7)] and ventricular tachycardia [HR: 7.7 (CI 4.2–14.3)] also occurred more often than in the control group. The risk of sudden cardiac death was increased [HR: 8.3 (CI 3.8–18.0)] but the etiology was unclear due to lack of autopsies.

Conclusion

Non-aortic cardiovascular disease in patients with MFS is exceptionally prevalent and the range of diseases varies between women and men. Physicians caring for MFS patients must be aware of this large spectrum of cardiovascular diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials and code availability

The information used in the analyses combine Danish administrative registers (as described in the paper). The data use is subject to the European Union’s General Data Protection Regulation (GDPR). The data are physically stored on computers at Statistics Denmark and the data may not be transferred to computers outside Statistics Denmark. Researchers interested in obtaining access to the register data employed in this paper are required to submit a written application to gain approval from Statistics Denmark. The application must include a detailed description of the proposed project, its purpose, as well as a description of the required datasets, variables, and analysis population. Applications can be submitted by researchers who are affiliated with Danish institutions accepted by Statistics Denmark, or by researchers outside of Denmark who collaborate with researchers affiliated with these institutions.

References

  1. Dietz HC, Cutting GR, Pyeritz RE et al (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339. https://doi.org/10.1038/352337a0

    Article  CAS  PubMed  Google Scholar 

  2. Thomson J, Singh M, Eckersley A, Cain SA, Sherratt MJ, Baldock C (2019) Fibrillin microfibrils and elastic fibre proteins: functional interactions and extracellular regulation of growth factors. Semin Cell Dev Biol 89:109–117. https://doi.org/10.1016/j.semcdb.2018.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loeys BL, Dietz HC, Braverman AC et al (2010) The revised Ghent nosology for the Marfan syndrome. J Med Genet 47:476–485. https://doi.org/10.1136/jmg.2009.072785

    Article  CAS  PubMed  Google Scholar 

  4. Groth KA, Stochholm K, Hove H et al (2017) Aortic events in a nationwide Marfan syndrome cohort. Clin Res Cardiol 106(2):105–112. https://doi.org/10.1007/s00392-016-1028-3

    Article  PubMed  Google Scholar 

  5. Groth KA, Stochholm K, Hove H, Andersen NH, Gravholt CH (2018) Causes of mortality in the Marfan syndrome (from a Nationwide Register Study). Am J Cardiol 122(7):1231–1235. https://doi.org/10.1016/j.amjcard.2018.06.034

    Article  PubMed  Google Scholar 

  6. von Kodolitsch Y, Demolder A, Girdauskas E et al (2019) Features of Marfan syndrome not listed in the Ghent nosology—the dark side of the disease. Expert Rev Cardiovasc Ther 17:883–915. https://doi.org/10.1080/14779072.2019.1704625

    Article  CAS  Google Scholar 

  7. Rybczynski M, Mir TS, Sheikhzadeh S et al (2010) Frequency and age-related course of mitral valve dysfunction in the Marfan syndrome. Am J Cardiol 106:1048–1053. https://doi.org/10.1016/j.amjcard.2010.05.038

    Article  PubMed  Google Scholar 

  8. Winther S, Williams LK, Keir M et al (2019) Cardiovascular magnetic resonance provides evidence of abnormal myocardial strain and primary cardiomyopathy in Marfan syndrome. J Comput Assist Tomogr 43:410–415. https://doi.org/10.1097/RCT.0000000000000863

    Article  PubMed  Google Scholar 

  9. Isekame Y, Gati S, Aragon-Martin JA, Bastiaenen R, Kondapally Seshasai SR, Child A (2016) Cardiovascular management of adults with Marfan syndrome. Eur Cardiol 11:102–110. https://doi.org/10.15420/ecr/2016:19:2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aydin A, Adsay BA, Sheikhzadeh S et al (2013) Observational cohort study of ventricular arrhythmia in adults with Marfan syndrome caused by FBN1 mutations. PLoS ONE 8:1–10. https://doi.org/10.1371/journal.pone.0081281

    Article  CAS  Google Scholar 

  11. Yetman AT, Bornemeier RA, McCrindle BW (2003) Long-term outcome in patients with Marfan syndrome: is aortic dissection the only cause of sudden death? J Am Coll Cardiol 41:329–332. https://doi.org/10.1016/s0735-1097(02)02699-2

    Article  PubMed  Google Scholar 

  12. Schaeffer BN, Rybczynski M, Sheikhzadeh S et al (2015) Heart rate turbulence and deceleration capacity for risk prediction of serious arrhythmic events in Marfan syndrome. Clin Res Cardiol 104:1054–1063. https://doi.org/10.1007/s00392-015-0873-9

    Article  PubMed  Google Scholar 

  13. Erbel R, Aboyans V, Boileau C et al (2014) 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the european society of cardiology (ESC). Eur Heart J 35:2873–2926. https://doi.org/10.1093/eurheartj/ehu281

    Article  PubMed  Google Scholar 

  14. Schmidt M, Schmidt SAJ, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT (2015) The danish national patient registry: a review of content, data quality, and research potential. Clin Epidemiol 7:449–490. https://doi.org/10.2147/CLEP.S91125

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johannesdottir SA, Horváth-Puhó E, Ehrenstein V, Schmidt M, Pedersen L, Sørensen HT (2012) Existing data sources for clinical epidemiology: the danish national database of reimbursed prescriptions. Clin Epidemiol 4:303–313. https://doi.org/10.2147/CLEP.S37587

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sundbøll J, Adelborg K, Munch T et al (2016) Positive predictive value of cardiovascular diagnoses in the Danish National Patient Registry: a validation study. BMJ Open 6:e012832. https://doi.org/10.1136/bmjopen-2016-012832

    Article  PubMed  PubMed Central  Google Scholar 

  17. Groth KA, Hove H, Kyhl K et al (2015) Prevalence, incidence, and age at diagnosis in Marfan syndrome. Orphanet J Rare Dis 10:153. https://doi.org/10.1186/s13023-015-0369-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Eggebrecht H, Schmermund A, von Birgelen C et al (2015) Resistant hypertension in patients with chronic aortic dissection. J Hum Hypertens 19:227–231. https://doi.org/10.1038/sj.jhh.1001800

    Article  CAS  Google Scholar 

  19. Sato C, Wakabayashi K, Suzuki H (2014) Natural course of isolated spontaneous coronary artery dissection in Marfan syndrome. Int J Cardiol 177:20–22. https://doi.org/10.1016/j.ijcard.2014.09.061

    Article  PubMed  Google Scholar 

  20. Kunkala MR, Schaff HV, Li Z et al (2013) Mitral valve disease in patients with Marfan syndrome undergoing aortic root replacement. Circulation 128:S243-247. https://doi.org/10.1161/CIRCULATIONAHA.112.000113

    Article  PubMed  Google Scholar 

  21. Cañadas V, Vilacosta I, Bruna I, Fuster V (2010) Marfan syndrome. Part 1: pathophysiology and diagnosis. Nat Rev Cardiol 7:256–265. https://doi.org/10.1038/nrcardio.2010.30

    Article  CAS  PubMed  Google Scholar 

  22. Judge DP, Biery NJ, Keene DR et al (2014) Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 114:172–181. https://doi.org/10.1172/JCI20641

    Article  Google Scholar 

  23. Wei H, Hu JH, Angelov SN et al (2017) Aortopathy in a mouse model of Marfan syndrome is not mediated by altered transforming growth factor beta signaling. J Am Heart Assoc 24(6):e004968. https://doi.org/10.1161/JAHA.116.004968

    Article  Google Scholar 

  24. Habashi JP, Judge DP, Holm TM et al (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121. https://doi.org/10.1126/science.1124287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mueller GC, Stark V, Steiner K et al (2013) Impact of age and gender on cardiac pathology in children and adolescents with Marfan syndrome. Pediatr Cardiol 34:991–998. https://doi.org/10.1007/s00246-012-0593-0

    Article  PubMed  Google Scholar 

  26. Glesby MJ, Pyeritz RE (1989) Association of mitral valve prolapse and systemic abnormalities of connective tissue. A phenotypic continuum. JAMA 262:523–528

    Article  CAS  PubMed  Google Scholar 

  27. Rippe M, De Backer J, Kutsche K et al (2016) Mitral valve prolapse syndrome and MASS phenotype: stability of aortic dilatation but progression of mitral valve prolapse. Int J Cardiol Heart Vasc 10:39–46. https://doi.org/10.1016/j.ijcha.2016.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pedersen MW, Groth KA, Mortensen KH, Brodersen J, Gravholt CH, Andersen NH (2019) Clinical and pathophysiological aspects of bicuspid aortic valve disease. Cardiol Young 29:1–10. https://doi.org/10.1017/S1047951118001658

    Article  PubMed  Google Scholar 

  29. Milleron O, Ropers J, Arnoult F et al (2019) Clinical significance of aortic root modification associated with bicuspid aortic valve in Marfan syndrome. Circ Cardiovasc Imaging 12:e008129. https://doi.org/10.1161/CIRCIMAGING.118.008129

    Article  PubMed  Google Scholar 

  30. Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS (2001) Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. J Thorac Cardiovasc Surg 122:946–954. https://doi.org/10.1067/mtc.2001.116314

    Article  CAS  PubMed  Google Scholar 

  31. Debl K, Djavidani B, Buchner S et al (2009) Dilatation of the ascending aorta in bicuspid aortic valve disease: a magnetic resonance imaging study. Clin Res Cardiol 98:114–120. https://doi.org/10.1007/s00392-008-0731-0

    Article  CAS  PubMed  Google Scholar 

  32. Keane MG, Wiegers SE, Plappert T, Pochettino A, Bavaria JE, Sutton MG (2000) Bicuspid aortic valves are associated with aortic dilatation out of proportion to coexistent valvular lesions. Circulation. 102:35–39. https://doi.org/10.1161/01.cir.102.suppl3.iii-35

    Article  Google Scholar 

  33. Zehr KJ, Matloobi A, Connolly HM, Orszulak TA, Puga FJ, Schaff HV (2005) Surgical management of the aortic root in patients with Marfan syndrome. J Heart Valve Dis. 14:121–128

    PubMed  Google Scholar 

  34. Hetzer R, Siegel G, Delmo Walter EM (2016) Cardiomyopathy in Marfan syndrome. Eur J Cardiothorac Surg. 49:561–567. https://doi.org/10.1093/ejcts/ezv073

    Article  PubMed  Google Scholar 

  35. Meijboom LJ, Timmermans J, van Tintelen JP et al (2005) Evaluation of left ventricular dimensions and function in Marfan’s syndrome without significant valvular regurgitation. Am J Cardiol 95:795–797. https://doi.org/10.1016/j.amjcard.2004.11.042

    Article  PubMed  Google Scholar 

  36. Aalberts JJJ, van Tintelen JP, Meijboom LJ et al (2014) Relation between genotype and left-ventricular dilatation in patients with Marfan syndrome. Gene 534:40–43. https://doi.org/10.1016/j.gene.2013.10.033

    Article  CAS  PubMed  Google Scholar 

  37. Cook JR, Carta L, Bénard L et al (2014) Abnormal muscle mechanosignaling triggers cardiomyopathy in mice with Marfan syndrome. J Clin Invest 124:1329–1339. https://doi.org/10.1172/JCI71059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Campens L, Renard M, Trachet B et al (2015) Intrinsic cardiomyopathy in Marfan syndrome: results from in-vivo and ex-vivo studies of the Fbn1C1039G/+ model and longitudinal findings in humans. Pediatr Res 78:256–263. https://doi.org/10.1038/pr.2015.110

    Article  PubMed  Google Scholar 

  39. Rouf R, MacFarlane EG, Takimoto E et al (2017) Nonmyocyte ERK1/2 signaling contributes to load-induced cardiomyopathy in Marfan mice. JCI Insight 2:e91588. https://doi.org/10.1172/jci.insight.91588

    Article  PubMed Central  Google Scholar 

  40. Gensicke NM, Cavanaugh NB, Andersen ND et al (2020) Accelerated Marfan syndrome model recapitulates established signaling pathways. J Thorac Cardiovasc Surg 159:1719–1726. https://doi.org/10.1016/j.jtcvs.2019.05.043

    Article  CAS  PubMed  Google Scholar 

  41. Christopher Y, Richmond JW (2018) Angiotensin, transforming growth factor β and aortic dilatation in Marfan syndrome: of mice and humans. Int J Cardiol Heart Vasc 12:71–80. https://doi.org/10.1016/j.ijcha.2018.02.009

    Article  Google Scholar 

  42. Holm TM, Habashi JP, Doyle JJ et al (2011) Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332:358–361. https://doi.org/10.1126/science.1192149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roman MJ, Devereux RB, Preiss LR et al (2017) Associations of age and sex with marfan phenotype: the national heart, lung, and blood institute gentac (genetically triggered thoracic aortic aneurysms and cardiovascular conditions) registry. Circ Cardiovasc Genet 10:e001647. https://doi.org/10.1161/CIRCGENETICS.116.001647

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kiotsekoglou A, Sutherland GR, Moggridge JC, Nassiri DK, Camm AJ, Child AH (2009) The unravelling of primary myocardial impairment in Marfan syndrome by modern echocardiography. Heart 95:1561–1566. https://doi.org/10.1136/hrt.2008.152934

    Article  CAS  PubMed  Google Scholar 

  45. Alpendurada F, Wong J, Kiotsekoglou A et al (2010) Evidence for Marfan cardiomyopathy. Eur J Heart Fail 12:1085–1091. https://doi.org/10.1093/eurjhf/hfq127

    Article  PubMed  Google Scholar 

  46. Schulz EG (2017) X-chromosome dosage as a modulator of pluripotency, signalling and differentiation? Philos Trans R Soc Lond B Biol Sci 5(372):20160366. https://doi.org/10.1098/rstb.2016.0366

    Article  CAS  Google Scholar 

  47. Tashima Y, He H, Cui JZ et al (2020) Androgens accentuate TGF-β dependent Erk/Smad activation during thoracic aortic aneurysm formation in marfan syndrome male mice. J Am Heart Assoc 9:e015773. https://doi.org/10.1161/JAHA.119.015773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Borger MA, Mansour MC, Levine RA (2019) Atrial fibrillation and mitral valve prolapse: time to intervene? J Am Coll Cardiol 73:275–277. https://doi.org/10.1016/j.jacc.2018.11.018

    Article  PubMed  PubMed Central  Google Scholar 

  49. Muiño-Mosquera L, De Wilde H, Devos D et al (2020) Myocardial disease and ventricular arrhythmia in Marfan syndrome: a prospective study. Orphanet J Rare Dis 15:300. https://doi.org/10.1186/s13023-020-01581-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study did not receive any specific funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceptualized and designed the study and supported the data collection. Analyses and calculations were done by Kirstine Stochholm. Niels Holmark Andersen drafted the initial manuscript. All authors reviewed and revised the manuscript.

Corresponding author

Correspondence to Niels H. Andersen.

Ethics declarations

Conflict of interest

None to declare.

Ethical approval

The study was approved by the Scientific Ethical Committee (31422) and the Danish Data Protection Agency (2011–41-6986).

Consent for publication.

All authors approved the final manuscript as submitted and agreed to be accountable for all aspects of the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, N.H., Groth, K.A., Berglund, A. et al. Non-aortic cardiovascular disease in Marfan syndrome: a nationwide epidemiological study. Clin Res Cardiol 110, 1106–1115 (2021). https://doi.org/10.1007/s00392-021-01858-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-021-01858-3

Keywords

Navigation