Skip to main content
Log in

Outcomes of patients treated with a biodegradable-polymer sirolimus-eluting stent versus durable-polymer everolimus-eluting stents after rotational atherectomy

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

To compare Orsiro biodegradable-polymer sirolimus-eluting stent (Orsiro BP-SES) with durable-polymer everolimus-eluting stent (DP-EES) regarding target lesion failure (TLF) after rotational atherectomy (RA), with a focus on small stents (diameter ≤ 3 mm) where Orsiro BP-SES has 60 µm strut thickness, while DP-EES remains with 81 µm strut thickness.

Background

New-generation drug-eluting stent (DES) is superior to early-generation DES in all percutaneous coronary intervention (PCI) settings including RA. Recently, the Orsiro BP-SES was superior to a DP-EES in an all comer’s population.

Methods

Among patients who underwent RA at a single center, 121 were treated with Orsiro BP-SES and 164 with DP-EES (Promus and Xience). Those treated with other stent types, presenting with acute myocardial infarction or had a chronic total occlusion were excluded. Incidence of TLF was assessed.

Results

After 2 years, the TLF rate in Orsiro BP-SES and DP-EES groups was 10% and 18%, respectively (adjusted HR 0.55, 95%CI 0.26–1.16, p = 0.115). The rate of TLF was significantly lower in small Orsiro BP-SES with ultra-thin struts as compared to DP-EES with the same diameters (adjusted HR 0.19, 95% CI 0.04–0.87, p = 0.032), driven by lower rates of clinically driven target lesion revascularization (log-rank p = 0.022). Age (p = 0.035), total stent length (p = 0.007) and diabetes mellitus (p = 0.011) emerged as independent predictors of TLF in the whole population.

Conclusion

In the whole cohort, Orsiro BP-SES and DP-EES had comparable rates of long-term TLF after RA. In the small stent subgroup, the Orsiro BP-SES with ultra-thin struts showed significant lower rate of TLF at 2 years.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The deidentified participant data will be shared on a request basis. Please directly contact the corresponding author to request data sharing.

Code availability

Data analysis was performed using SPSS V.24.0 (IBM Corp., New York, USA).

Abbreviations

BMI:

Body mass index

CABG:

Coronary artery bypass graft

CAC:

Coronary artery calcification

CTO:

Chronic total occlusion

DES:

Drug-eluting stent

DP-EES:

Durable-polymer everolimus-eluting stent

GFR:

Glomerular filtration rate

LVEF:

Left ventricular ejection fraction

MACE:

Major adverse cardiac events

MI:

Myocardial infarction

Orsiro BP-SES:

Orsiro biodegradable-polymer sirolimus-eluting stent

PCI:

Percutaneous coronary intervention

RA:

Rotational atherectomy

ST:

Stent thrombosis

TLF:

Target lesion failure

TLR:

Target-lesion revascularization

TV-MI:

Target vessel myocardial infarction

UFH:

Unfractionated heparin

References

  1. Genereux P, Madhavan MV, Mintz GS et al (2014) Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) and ACUITY (acute catheterization and urgent intervention triage strategy) trials. J Am Coll Cardiol 63(18):1845–1854

    Article  Google Scholar 

  2. Takebayashi H, Kobayashi Y, Mintz GS et al (2005) Intravascular ultrasound assessment of lesions with target vessel failure after sirolimus-eluting stent implantation. Am J Cardiol 95(4):498–502. https://doi.org/10.1016/j.amjcard.2004.10.020

    Article  CAS  PubMed  Google Scholar 

  3. Kobayashi Y, Okura H, Kume T et al (2014) Impact of target lesion coronary calcification on stent expansion. Circ J 78(9):2209–2214. https://doi.org/10.1253/circj.cj-14-0108

    Article  PubMed  Google Scholar 

  4. Madhavan MV, Tarigopula M, Mintz GS et al (2014) Coronary artery calcification: pathogenesis and prognostic implications. J Am Coll Cardiol 63(17):1703–1714. https://doi.org/10.1016/j.jacc.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  5. Barbato E, Carrie D, Dardas P et al (2015) European expert consensus on rotational atherectomy. EuroIntervention 11(1):30–36. https://doi.org/10.4244/EIJV11I1A6

    Article  PubMed  Google Scholar 

  6. Barbato E, Shlofmitz E, Milkas A et al (2017) State of the art: evolving concepts in the treatment of heavily calcified and undilatable coronary stenoses—from debulking to plaque modification, a 40-year-long journey. EuroIntervention 13(6):696–705. https://doi.org/10.4244/EIJ-D-17-00473

    Article  PubMed  Google Scholar 

  7. Dill T, Dietz U, Hamm CW et al (2000) A randomized comparison of balloon angioplasty versus rotational atherectomy in complex coronary lesions (COBRA study). Eur Heart J 21(21):1759–1766. https://doi.org/10.1053/euhj.2000.2242

    Article  CAS  PubMed  Google Scholar 

  8. Moussa I, Di Mario C, Moses J et al (1997) Coronary stenting after rotational atherectomy in calcified and complex lesions. Angiographic and clinical follow-up results. Circulation 96(1):128–136. https://doi.org/10.1161/01.cir.96.1.128

    Article  CAS  PubMed  Google Scholar 

  9. Allali A, Holy EW, Sulimov DS et al (2018) Long-term clinical outcome of early generation versus new-generation drug-eluting stents in 481 patients undergoing rotational atherectomy: a retrospective analysis. Cardiology and therapy 7(1):89–99. https://doi.org/10.1007/s40119-017-0101-y

    Article  PubMed  Google Scholar 

  10. Jensen LO, Thayssen P, Christiansen EH et al (2016) Safety and efficacy of everolimus- versus sirolimus-eluting stents: 5-year results from SORT OUT IV. J Am Coll Cardiol 67(7):751–762. https://doi.org/10.1016/j.jacc.2015.11.051

    Article  CAS  PubMed  Google Scholar 

  11. Byrne RA, Stone GW, Ormiston J et al (2017) Coronary balloon angioplasty, stents, and scaffolds. Lancet 390(10096):781–792. https://doi.org/10.1016/S0140-6736(17)31927-X

    Article  PubMed  Google Scholar 

  12. Joner M, Finn AV, Farb A et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48(1):193–202. https://doi.org/10.1016/j.jacc.2006.03.042

    Article  PubMed  Google Scholar 

  13. Saito S, Toelg R, Witzenbichler B et al (2019) BIOFLOW-IV, a randomised, intercontinental, multicentre study to assess the safety and effectiveness of the Orsiro sirolimus-eluting stent in the treatment of subjects with de novo coronary artery lesions: primary outcome target vessel failure at 12 months. EuroIntervention 15(11):e1006–e1013. https://doi.org/10.4244/EIJ-D-18-01214

    Article  PubMed  Google Scholar 

  14. Kandzari DE, Mauri L, Koolen JJ et al (2017) Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial. Lancet 390(10105):1843–1852. https://doi.org/10.1016/S0140-6736(17)32249-3

    Article  CAS  PubMed  Google Scholar 

  15. Windecker S, Haude M, Neumann FJ et al (2015) Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: results of the randomized BIOFLOW-II trial. Circ Cardiovasc Interv 8(2):e001441. https://doi.org/10.1161/CIRCINTERVENTIONS.114.001441

    Article  CAS  PubMed  Google Scholar 

  16. Buiten RA, Ploumen EH, Zocca P et al (2019) Outcomes in patients treated with thin-strut, very thin-strut, or ultrathin-strut drug-eluting stents in small coronary vessels: a prespecified analysis of the randomized BIO-RESORT trial. JAMA cardiology 4(7):659–669. https://doi.org/10.1001/jamacardio.2019.1776

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kereiakes DJ, Meredith IT, Windecker S et al (2015) Efficacy and safety of a novel bioabsorbable polymer-coated everolimus-eluting coronary stent: the EVOLVE II randomized trial. Circ Cardiovasc Interv. https://doi.org/10.1161/CIRCINTERVENTIONS.114.002372

    Article  PubMed  PubMed Central  Google Scholar 

  18. Abdel-Wahab M, Toelg R, Byrne RA et al (2018) High-speed rotational atherectomy versus modified balloons prior to drug-eluting stent implantation in severely calcified coronary lesions. Circ Cardiovasc Interv 11(10):e007415. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007415

    Article  PubMed  Google Scholar 

  19. Thygesen K, Alpert JS, Jaffe AS et al (2012) Third universal definition of myocardial infarction. Circulation 126(16):2020–2035. https://doi.org/10.1161/CIR.0b013e31826e1058

    Article  PubMed  Google Scholar 

  20. Garcia-Garcia HM, McFadden EP, Farb A et al (2018) Standardized end point definitions for coronary intervention trials: the academic research consortium-2 consensus document. Eur Heart J 39(23):2192–2207. https://doi.org/10.1093/eurheartj/ehy223

    Article  PubMed  Google Scholar 

  21. Iglesias JF, Roffi M, Degrauwe S et al (2017) Orsiro cobalt-chromium sirolimus-eluting stent: present and future perspectives. Expert Rev Med Devices 14(10):773–788. https://doi.org/10.1080/17434440.2017.1378091

    Article  CAS  PubMed  Google Scholar 

  22. Kawamoto H, Panoulas VF, Sato K et al (2015) Impact of strut width in periprocedural myocardial infarction: a propensity-matched comparison between bioresorbable scaffolds and the first-generation sirolimus-eluting stent. JACC Cardiovasc Interv 8(7):900–909. https://doi.org/10.1016/j.jcin.2015.02.011

    Article  PubMed  Google Scholar 

  23. Hausleiter J, Kastrati A, Mehilli J et al (2003) Impact of lesion complexity on the capacity of a trial to detect differences in stent performance: results from the ISAR-STEREO trial. Am Heart J 146(5):882–886. https://doi.org/10.1016/S0002-8703(03)00435-6

    Article  PubMed  Google Scholar 

  24. Torii S, Jinnouchi H, Sakamoto A et al (2019) Vascular responses to coronary calcification following implantation of newer-generation drug-eluting stents in humans: impact on healing. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz850

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Liu Y, Zheng Y et al (2019) Catheter thermal energy generation and temperature in rotational atherectomy. Med Eng Phys 70:29–38. https://doi.org/10.1016/j.medengphy.2019.06.014

    Article  PubMed  Google Scholar 

  26. Abdel-Wahab M, Richardt G, Joachim Buttner H et al (2013) High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (rotational atherectomy prior to taxus stent treatment for complex native coronary artery disease) trial. JACC Cardiovasc Interv 6(1):10–19. https://doi.org/10.1016/j.jcin.2012.07.017

    Article  PubMed  Google Scholar 

  27. Pilgrim T, Heg D, Roffi M et al (2014) Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable polymer everolimus-eluting stent for percutaneous coronary revascularisation (BIOSCIENCE): a randomised, single-blind, non-inferiority trial. Lancet 384(9960):2111–2122. https://doi.org/10.1016/S0140-6736(14)61038-2

    Article  CAS  PubMed  Google Scholar 

  28. Cassese S, Ndrepepa G, Byrne RA et al (2018) Outcomes of patients treated with ultrathin-strut biodegradable polymer sirolimus-eluting stents versus fluoropolymer-based everolimus-eluting stents: a meta-analysis of randomised trials. EuroIntervention 14(2):224–231. https://doi.org/10.4244/EIJ-D-18-00024

    Article  PubMed  Google Scholar 

  29. Pilgrim T, Piccolo R, Heg D et al (2018) Ultrathin-strut, biodegradable-polymer, sirolimus-eluting stents versus thin-strut, durable-polymer, everolimus-eluting stents for percutaneous coronary revascularisation: 5-year outcomes of the BIOSCIENCE randomised trial. Lancet 392(10149):737–746. https://doi.org/10.1016/S0140-6736(18)31715-X

    Article  CAS  PubMed  Google Scholar 

  30. Lefevre T, Haude M, Neumann FJ et al (2018) Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: 5-year outcomes of the randomized BIOFLOW-II trial. JACC Cardiovasc Interv 11(10):995–1002. https://doi.org/10.1016/j.jcin.2018.04.014

    Article  PubMed  Google Scholar 

  31. Teeuwen K, van der Schaaf RJ, Adriaenssens T et al (2017) Randomized multicenter trial investigating angiographic outcomes of hybrid sirolimus-eluting stents with biodegradable polymer compared with everolimus-eluting stents with durable polymer in chronic total occlusions: the PRISON IV trial. JACC Cardiovasc Interv 10(2):133–143. https://doi.org/10.1016/j.jcin.2016.10.017

    Article  PubMed  Google Scholar 

  32. Iglesias JF, Muller O, Heg D et al (2019) Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in patients with ST-segment elevation myocardial infarction (BIOSTEMI): a single-blind, prospective, randomised superiority trial. Lancet 394(10205):1243–1253. https://doi.org/10.1016/S0140-6736(19)31877-X

    Article  CAS  PubMed  Google Scholar 

  33. Pache J, Kastrati A, Mehilli J et al (2003) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol 41(8):1283–1288. https://doi.org/10.1016/s0735-1097(03)00119-0

    Article  PubMed  Google Scholar 

  34. Kolandaivelu K, Swaminathan R, Gibson WJ et al (2011) Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 123(13):1400–1409. https://doi.org/10.1161/CIRCULATIONAHA.110.003210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elezi S, Dibra A, Mehilli J et al (2006) Vessel size and outcome after coronary drug-eluting stent placement: results from a large cohort of patients treated with sirolimus- or paclitaxel-eluting stents. J Am Coll Cardiol 48(7):1304–1309. https://doi.org/10.1016/j.jacc.2006.05.068

    Article  PubMed  Google Scholar 

  36. Cassese S, Byrne RA, Tada T et al (2014) Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart 100(2):153–159. https://doi.org/10.1136/heartjnl-2013-304933

    Article  Google Scholar 

  37. Kastrati A, Mehilli J, Dirschinger J et al (2001) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103(23):2816–2821. https://doi.org/10.1161/01.cir.103.23.2816

    Article  CAS  PubMed  Google Scholar 

  38. Bangalore S, Toklu B, Patel N et al (2018) Newer-generation ultrathin strut drug-eluting stents versus older second-generation thicker strut drug-eluting stents for coronary artery disease. Circulation 138(20):2216–2226. https://doi.org/10.1161/CIRCULATIONAHA.118.034456

    Article  CAS  PubMed  Google Scholar 

  39. Iglesias JF, Heg D, Roffi M et al (2019) Long-term effect of ultrathin-strut versus thin-strut drug-eluting stents in patients with small vessel coronary artery disease undergoing percutaneous coronary intervention: a subgroup analysis of the BIOSCIENCE randomized trial. Circ Cardiovasc Interv 12(8):e008024. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008024

    Article  CAS  PubMed  Google Scholar 

  40. Serruys PW, Farooq V, Kalesan B et al (2013) Improved safety and reduction in stent thrombosis associated with biodegradable polymer-based biolimus-eluting stents versus durable polymer-based sirolimus-eluting stents in patients with coronary artery disease: final 5-year report of the LEADERS (limus eluted from a durable versus erodable stent coating) randomized, non-inferiority trial. JACC Cardiovasc Interv 6(8):777–789. https://doi.org/10.1016/j.jcin.2013.04.011

    Article  PubMed  Google Scholar 

  41. Kufner S, Byrne RA, Valeskini M et al (2016) Five-year outcomes from a trial of three limus-eluting stents with different polymer coatings in patients with coronary artery disease: final results from the ISAR-TEST 4 randomised trial. EuroIntervention 11(12):1372–1379. https://doi.org/10.4244/EIJY14M11_02

    Article  PubMed  Google Scholar 

  42. El-Hayek G, Bangalore S, Casso Dominguez A et al (2017) Meta-analysis of randomized clinical trials comparing biodegradable polymer drug-eluting stent to second-generation durable polymer drug-eluting stents. JACC Cardiovasc Interv 10(5):462–473. https://doi.org/10.1016/j.jcin.2016.12.002

    Article  PubMed  Google Scholar 

  43. Dan K, Garcia-Garcia HM, Kolm P et al (2020) Comparison of ultrathin, bioresorbable-polymer sirolimus-eluting stents and thin, durable-polymer everolimus-eluting stents in calcified or small vessel lesions. Circ Cardiovasc Interv 13(9):e009189. https://doi.org/10.1161/CIRCINTERVENTIONS.120.009189

    Article  CAS  PubMed  Google Scholar 

  44. Toelg R, Slagboom T, Waltenberger J et al (2020) Individual patient data analysis of the BIOFLOW study program comparing safety and efficacy of a bioresorbable polymer sirolimus eluting stent to a durable polymer everolimus eluting stent. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.29254

    Article  PubMed  Google Scholar 

  45. Mintz GS, Guagliumi G (2017) Intravascular imaging in coronary artery disease. Lancet 390(10096):793–809. https://doi.org/10.1016/S0140-6736(17)31957-8

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Mankerious.

Ethics declarations

Conflict of interest

Dr. Hemetsberger received speaker’s honoraria from Boston Scientific. Dr. Richardt received an Institutional Research Grant from Boston Scientific. Dr. Allali is a proctor for Boston Scientific. The other authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments. The present study was approved by the Ethics Committee of Schleswig–Holstein Medical Syndicate. Reference Number: 168-11.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data.

Supplementary Information

Below is the link to the electronic supplementary material.

392_2021_1852_MOESM1_ESM.tif

Online resource Fig. 1 Study Flow-chart MI, myocardial infarction; CTO, chronic total occlusion; Orsiro BP-SES, Orsiro biodegradable-polymer sirolimus-eluting stent; DP-EES, durable-polymer evorolimus eluting stent

Supplementary file2 (DOCX 62 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mankerious, N., Hemetsberger, R., Traboulsi, H. et al. Outcomes of patients treated with a biodegradable-polymer sirolimus-eluting stent versus durable-polymer everolimus-eluting stents after rotational atherectomy. Clin Res Cardiol 110, 1574–1585 (2021). https://doi.org/10.1007/s00392-021-01852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-021-01852-9

Keywords

Navigation