Impact of coronary calcium score and lesion characteristics on the diagnostic performance of machine-learning-based computed tomography-derived fractional flow reserve

Eur Heart J Cardiovasc Imaging. 2021 Aug 14;22(9):998-1006. doi: 10.1093/ehjci/jeab062.

Abstract

Aims: To evaluate the impact of coronary artery calcium (CAC) score, minimal lumen area (MLA), and length of coronary artery stenosis on the diagnostic performance of the machine-learning-based computed tomography-derived fractional flow reserve (ML-FFR).

Methods and results: In 471 patients with coronary artery disease, computed tomography angiography (CTA) and invasive coronary angiography were performed with fractional flow reserve (FFR) in 557 lesions at a single centre. Diagnostic performances of ML-FFR, computational fluid dynamics-based CT-FFR (CFD-FFR), MLA, quantitative coronary angiography (QCA), and visual stenosis grading were evaluated using invasive FFR as a reference standard. Diagnostic performances were analysed according to lesion characteristics including the MLA, length of stenosis, CAC score, and stenosis degree. ML-FFR was obtained by automated feature selection and model building from quantitative CTA. A total of 272 lesions showed significant ischaemia, defined by invasive FFR ≤0.80. There was a significant correlation between CFD-FFR and ML-FFR (r = 0.99, P < 0.001). ML-FFR showed moderate sensitivity and specificity in the per-patient analysis. Diagnostic performances of CFD-FFR and ML-FFR did not decline in patients with high CAC scores (CAC > 400). Sensitivities of CFD-FFR and ML-FFR showed a downward trend along with the increase in lesion length and decrease in MLA. The area under the curve (AUC) of ML-FFR (0.73) was higher than those of QCA and visual grading (AUC = 0.65 for both, P < 0.001) and comparable to those of MLA (AUC = 0.71, P = 0.21) and CFD-FFR (AUC = 0.73, P = 0.86).

Conclusion: ML-FFR showed comparable results to MLA and CFD-FFR for the prediction of lesion-specific ischaemia. Specificities and accuracies of CFD-FFR and ML-FFR decreased with smaller MLA and long lesion length.

Keywords: CT fractional flow reserve; coronary artery disease; coronary calcium; machine-learning.

MeSH terms

  • Calcium
  • Computed Tomography Angiography
  • Coronary Angiography
  • Coronary Artery Disease* / diagnostic imaging
  • Coronary Stenosis* / diagnostic imaging
  • Fractional Flow Reserve, Myocardial*
  • Humans
  • Machine Learning
  • Predictive Value of Tests
  • Reproducibility of Results
  • Severity of Illness Index
  • Tomography, X-Ray Computed

Substances

  • Calcium