Skip to main content
Log in

Alcohol-induced right bundle branch block is associated with a benign outcome in HOCM after alcohol septum ablation (ASA)

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Introduction

Alcohol septum ablation (ASA) is a treatment option for hypertrophic obstructive cardiomyopathy (HOCM). We examined the impact of ASA-induced bundle branch block (BBB) on clinical and hemodynamic features.

Methods and results

We retrospectively analysed 98 HOCM patients with regard to ASA-induced BBB. Clinical examination was performed at baseline, early after ASA and at chronic follow-up (FU). ASA reduced left ventricular outflow tract gradient (LVOTG) during chronic FU (69.2 ± 41.6 pre vs. 31.8 ± 30.3 mmHg post ASA; p < 0.05) and interventricular septal diameter (21.7 ± 3.4 pre vs. 18.7 ± 5.0 mm post ASA; p < 0.05). ASA-induced early right BBB (RBBB) until discharge was observed in 44.9% and chronic RBBB at FU in 32.7%. Left BBB (LBBB) occurred in 13.3% early after ASA and in only 4.1% at chronic FU. Chronic RBBB was associated with more pronounced exercise-induced LVOTG reduction (102.1 ± 55.2 with vs. 73.6 ± 60.0 mmHg without; p < 0.05). 6-min-walk-test (6-MWT) and NYHA class were not affected by RBBB. LBBB had no influence on LVOTG, 6-MWT and symptoms. More ethanol was injected in patients with early RBBB (1.1 ± 0.4 vs. 0.8 ± 0.3 ml without; p < 0.05), who also showed higher mean CK release (827 ± 341 vs. 583 ± 279 U/l without; p < 0.05). Pacemaker implantation during FU was necessary in 11.5% of patients with early RBBB, 3.1% with chronic RBBB, 7.7% with early LBBB and 0% with chronic LBBB (p = n.s. for BBB vs. no BBB).

Conclusion

ASA-induced RBBB is associated with a higher volume of infused ethanol and higher maximum CK release. RBBB does not adversely affect the clinical outcome or need for pacemaker implantation but was associated with higher exercise-induced LVOTG reduction during chronic FU.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The original data are to the authors.

References

  1. Maron BJ, Gardin JM, Flack JM et al (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. coronary artery risk development in (young) adults. Circulation 92:785–789. https://doi.org/10.1161/01.cir.92.4.785

    Article  CAS  PubMed  Google Scholar 

  2. Kuhn H, Mercier J, Köhler E et al (1983) Differential diagnosis of hypertrophic cardiomyopathies: typical (subaortic) hypertrophic obstructive cardiomyopathy, atypical (mid-ventricular) hypertrophic obstructive cardiomyopathy and hypertrophic non-obstructive cardiomyopathy. Eur Heart J 4(Suppl.F):93–104. https://doi.org/10.1093/eurheartj/4.suppl_f.93

    Article  PubMed  Google Scholar 

  3. Authorsmembers, Elliott PM, Anastasakis A, TF et al (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European society of cardiology (ESC). Eur Heart J 35:2733–2779. https://doi.org/10.1093/eurheartj/ehu284

    Article  Google Scholar 

  4. Morrow AG, Reitz BA, Epstein SE et al (1975) Operative treatment in hypertrophic subaortic stenosis. Techniques, and the results of pre and postoperative assessments in 83 patients. Circulation 52:88–102. https://doi.org/10.1161/01.cir.52.1.88

    Article  CAS  PubMed  Google Scholar 

  5. Kuhn H, Gietzen F, Leuner C, Gerenkamp T (1997) Induction of subaortic septal ischaemia to reduce obstruction in hypertrophic obstructive cardiomyopathy. Studies to develop a new catheter-based concept of treatment. Eur Heart J 18:846–851

    Article  CAS  Google Scholar 

  6. Sigwart U (1995) Non-surgical myocardial reduction for hypertrophic obstructive cardiomyopathy. Lancet 346:211–214. https://doi.org/10.1016/s0140-6736(95)91267-3

    Article  CAS  PubMed  Google Scholar 

  7. Agarwal S, Tuzcu EM, Desai MY et al (2010) Updated meta-analysis of septal alcohol ablation versus myectomy for hypertrophic cardiomyopathy. J Am Coll Cardiol 55:823–834. https://doi.org/10.1016/j.jacc.2009.09.047

    Article  PubMed  Google Scholar 

  8. Alam M, Dokainish H, Lakkis NM (2009) Hypertrophic obstructive cardiomyopathy-alcohol septal ablation vs. myectomy: a meta-analysis. Eur Heart J 30:1080–1087. https://doi.org/10.1093/eurheartj/ehp016

    Article  PubMed  Google Scholar 

  9. Leonardi RA, Kransdorf EP, Simel DL, Wang A (2010) Meta-analyses of septal reduction therapies for obstructive hypertrophic cardiomyopathy: comparative rates of overall mortality and sudden cardiac death after treatment. Circ Cardiovasc Interv 3:97–104. https://doi.org/10.1161/CIRCINTERVENTIONS.109.916676

    Article  PubMed  Google Scholar 

  10. El-Jack SS, Nasif M, Blake JW et al (2007) Predictors of Complete heart block after alcohol septal ablation for hypertrophic cardiomyopathy and the timing of pacemaker implantation. J Interv Cardiol 20:73–76. https://doi.org/10.1111/j.1540-8183.2007.00220.x

    Article  PubMed  Google Scholar 

  11. Faber L, Welge D, Fassbender D et al (2007) Percutaneous septal ablation for symptomatic hypertrophic obstructive cardiomyopathy: managing the risk of procedure-related AV conduction disturbances. Int J Cardiol 119:163–167. https://doi.org/10.1016/j.ijcard.2006.07.179

    Article  PubMed  Google Scholar 

  12. Lawrenz T, Lieder F, Bartelsmeier M et al (2007) Predictors of complete heart block after transcoronary ablation of septal hypertrophy. J Am Coll Cardiol 49:2356–2363. https://doi.org/10.1016/j.jacc.2007.02.056

    Article  PubMed  Google Scholar 

  13. Jensen MK, Faber L, Liebregts M et al (2019) Effect of impaired cardiac conduction after alcohol septal ablation on clinical outcomes: insights from the Euro-ASA registry. Eur Heart J Qual Care Clin Outcomes 5:252–258. https://doi.org/10.1093/ehjqcco/qcy049

    Article  PubMed  Google Scholar 

  14. Li C-Y, Shi Y-Q (2019) Retrospective analysis of risk factors for related complications of chemical ablation on hypertrophic obstructive cardiomyopathy. Arq Bras Cardiol 112:432–438. https://doi.org/10.5935/abc.20190060

    Article  PubMed  PubMed Central  Google Scholar 

  15. Drezner JA, Sharma S, Baggish A et al (2017) International criteria for electrocardiographic interpretation in athletes: consensus statement. Br J Sports Med 51:704–731. https://doi.org/10.1136/bjsports-2016-097331

    Article  PubMed  Google Scholar 

  16. Nagueh SF, Groves BM, Schwartz L et al (2011) Alcohol septal ablation for the treatment of hypertrophic obstructive cardiomyopathy. A multicenter North American Registry. J Am Coll Cardiol 58:2322–2328. https://doi.org/10.1016/j.jacc.2011.06.073

    Article  PubMed  Google Scholar 

  17. Gietzen FH, Leuner CJ, Raute-Kreinsen U et al (1999) Acute and long-term results after transcoronary ablation of septal hypertrophy (TASH). Catheter interventional treatment for hypertrophic obstructive cardiomyopathy. Eur Heart J 20:1342–1354. https://doi.org/10.1053/euhj.1999.1520

    Article  CAS  PubMed  Google Scholar 

  18. Faber L, Welge D, Fassbender D et al (2007) One-year follow-up of percutaneous septal ablation for symptomatic hypertrophic obstructive cardiomyopathy in 312 patients: predictors of hemodynamic and clinical response. Clin Res Cardiol 96:864–873. https://doi.org/10.1007/s00392-007-0578-9

    Article  CAS  PubMed  Google Scholar 

  19. Kuhn H, Lawrenz T, Lieder F et al (2008) Survival after transcoronary ablation of septal hypertrophy in hypertrophic obstructive cardiomyopathy (TASH): a 10 year experience. Clin Res Cardiol 97:234–243. https://doi.org/10.1007/s00392-007-0616-7

    Article  PubMed  Google Scholar 

  20. Frink RJ, James TN (1973) Normal blood supply to the human His bundle and proximal bundle branches. Circulation 47:8–18. https://doi.org/10.1161/01.cir.47.1.8

    Article  CAS  PubMed  Google Scholar 

  21. Cui H, Schaff HV, Nishimura RA et al (2019) Conduction abnormalities and long-term mortality following septal myectomy in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 74:645–655. https://doi.org/10.1016/j.jacc.2019.05.053

    Article  PubMed  Google Scholar 

  22. Qin JX, Shiota T, Lever HM et al (2004) Conduction system abnormalities in patients with obstructive hypertrophic cardiomyopathy following septal reduction interventions. Am J Cardiol 93:171–175. https://doi.org/10.1016/j.amjcard.2003.09.034

    Article  PubMed  Google Scholar 

  23. Waller BF, Gering LE, Branyas NA, Slack JD (1993) Anatomy, histology, and pathology of the cardiac conduction system: part II. Clin Cardiol 16:347–352. https://doi.org/10.1002/clc.4960160410

    Article  CAS  PubMed  Google Scholar 

  24. Gietzen FH, Leuner CJ, Obergassel L, et al (2001) Symptomatic and hemodynamic effects of right bundle branch block induced by transcoronary ablation of septal hypertrophy (tash) for hypertrophic obstructive cardiomyopathy. Circulation, Abstracts

  25. McCann GP, Van Dockum WG, Beek AM et al (2007) Extent of myocardial infarction and reverse remodeling assessed by cardiac magnetic resonance in patients with and without right bundle branch block following alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Am J Cardiol 99:563–567. https://doi.org/10.1016/j.amjcard.2006.08.067

    Article  PubMed  Google Scholar 

  26. Galve E, Sambola A, Saldaña G et al (2010) Late benefits of dual-chamber pacing in obstructive hypertrophic cardiomyopathy: a 10 year follow-up study. Heart 96:352–356. https://doi.org/10.1136/hrt.2008.158915

    Article  PubMed  Google Scholar 

  27. Kappenberger L, Linde C, Daubert C et al (1997) Pacing in hypertrophic obstructive cardiomyopathy. A randomized crossover study. PIC Study Group Eur Heart J 18:1249–1256. https://doi.org/10.1093/oxfordjournals.eurheartj.a015435

    Article  CAS  Google Scholar 

  28. Lucon A, Palud L, Pavin D et al (2013) Very late effects of dual chamber pacing therapy for obstructive hypertrophic cardiomyopathy. Arch Cardiovasc Dis 106:373–381. https://doi.org/10.1016/j.acvd.2013.04.003

    Article  PubMed  Google Scholar 

  29. Megevand A, Ingles J, Richmond DR, Semsarian C (2005) Long-term follow-up of patients with obstructive hypertrophic cardiomyopathy treated with dual-chamber pacing. Am J Cardiol 95:991–993. https://doi.org/10.1016/j.amjcard.2004.12.045

    Article  PubMed  Google Scholar 

  30. Maron BJ, Nishimura RA, McKenna WJ et al (1999) Assessment of permanent dual-chamber pacing as a treatment for drug-refractory symptomatic patients with obstructive hypertrophic cardiomyopathy. A randomized, double-blind, crossover study (M-PATHY). Circulation 99:2927–2933. https://doi.org/10.1161/01.cir.99.22.2927

    Article  CAS  PubMed  Google Scholar 

  31. Nishimura RA, Trusty JM, Hayes DL et al (1997) Dual-chamber pacing for hypertrophic cardiomyopathy: a randomized, double-blind, crossover trial. J Am Coll Cardiol 29:435–441. https://doi.org/10.1016/s0735-1097(96)00473-1

    Article  CAS  PubMed  Google Scholar 

  32. Slade AK, Sadoul N, Shapiro L et al (1996) DDD pacing in hypertrophic cardiomyopathy: a multicentre clinical experience. Heart 75:44–49. https://doi.org/10.1136/hrt.75.1.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Honda T, Shono H, Koyama J et al (2005) Impact of right atrial-left ventricular dual-chamber permanent pacing in patients with severely symptomatic hypertrophic obstructive cardiomyopathy. Circ J 69:536–542. https://doi.org/10.1253/circj.69.536

    Article  PubMed  Google Scholar 

Download references

Funding

This research was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Stellbrink.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

The research project was approved by the ethics committee of the Westfälische Wilhelms-University Münster, Germany (file number 2020-780-f-S).

Consent to participate

Referring to the national ethical guidelines of Germany (§6 Gesundheitsdatenschutzgesetz NRW) the authors waived consent to participate due to retrospective study design and only intra-departmental data collection in our analysis. This was approved by the ethics committee of the Westfälische Wilhelms-University Münster, Germany (file number 2020-780-f-S).

Consent for publication

Referring to the national ethical guidelines of Germany (§6 Gesundheitsdatenschutzgesetz NRW) the authors waived consent to publication due to retrospective study design and only intra-departmental data collection in our analysis. This was approved by the ethics committee of the Westfälische Wilhelms-University Münster, Germany (file number 2020-780-f-S).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawin, D., Lawrenz, T., Radke, K. et al. Alcohol-induced right bundle branch block is associated with a benign outcome in HOCM after alcohol septum ablation (ASA). Clin Res Cardiol 111, 175–185 (2022). https://doi.org/10.1007/s00392-021-01847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-021-01847-6

Keywords

Navigation