Ca2+-Dependent NOX5 (NADPH Oxidase 5) Exaggerates Cardiac Hypertrophy Through Reactive Oxygen Species Production

Hypertension. 2020 Sep;76(3):827-838. doi: 10.1161/HYPERTENSIONAHA.120.15558. Epub 2020 Jul 20.

Abstract

NOX5 (NADPH oxidase 5) is a homolog of the gp91phox subunit of the phagocyte NOX, which generates reactive oxygen species. NOX5 is involved in sperm motility and vascular contraction and has been implicated in diabetic nephropathy, atherosclerosis, and stroke. The function of NOX5 in the cardiac hypertrophy is unknown. Because NOX5 is a Ca2+-sensitive, procontractile NOX isoform, we questioned whether it plays a role in cardiac hypertrophy. Studies were performed in (1) cardiac tissue from patients undergoing heart transplant for cardiomyopathy and heart failure, (2) NOX5-expressing rat cardiomyocytes, and (3) mice expressing human NOX5 in a cardiomyocyte-specific manner. Cardiac hypertrophy was induced in mice by transverse aorta coarctation and Ang II (angiotensin II) infusion. NOX5 expression was increased in human failing hearts. Rat cardiomyocytes infected with adenoviral vector encoding human NOX5 cDNA exhibited elevated reactive oxygen species levels with significant enlargement and associated increased expression of ANP (atrial natriuretic peptides) and β-MHC (β-myosin heavy chain) and prohypertrophic genes (Nppa, Nppb, and Myh7) under Ang II stimulation. These effects were reduced by N-acetylcysteine and diltiazem. Pressure overload and Ang II infusion induced left ventricular hypertrophy, interstitial fibrosis, and contractile dysfunction, responses that were exaggerated in cardiac-specific NOX5 trangenic mice. These phenomena were associated with increased reactive oxygen species levels and activation of redox-sensitive MAPK (mitogen-activated protein kinase). N-acetylcysteine treatment reduced cardiac oxidative stress and attenuated cardiac hypertrophy in NOX5 trangenic. Our study defines Ca2+-regulated NOX5 as an important NOX isoform involved in oxidative stress- and MAPK-mediated cardiac hypertrophy and contractile dysfunction.

Keywords: NADPH oxidase; calcium; heart failure; hypertrophy; reactive oxidative species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcysteine / pharmacology*
  • Angiotensin II / pharmacology
  • Animals
  • Cardiomegaly* / drug therapy
  • Cardiomegaly* / metabolism
  • Free Radical Scavengers / pharmacology
  • Gene Expression Regulation / drug effects
  • Humans
  • Isoenzymes / metabolism
  • Mice
  • Mice, Transgenic
  • Mitogen-Activated Protein Kinase Kinases / metabolism*
  • Myocytes, Cardiac / metabolism
  • NADPH Oxidase 5 / metabolism*
  • Oxidative Stress / drug effects
  • Phagocytes / enzymology
  • Rats
  • Reactive Oxygen Species / metabolism*
  • Signal Transduction / drug effects
  • Vasoconstrictor Agents / pharmacology
  • Ventricular Myosins / metabolism

Substances

  • Free Radical Scavengers
  • Isoenzymes
  • Reactive Oxygen Species
  • Vasoconstrictor Agents
  • Angiotensin II
  • NADPH Oxidase 5
  • Mitogen-Activated Protein Kinase Kinases
  • Ventricular Myosins
  • Acetylcysteine