Skip to main content
Log in

Myocardial salvage is increased after sympathetic renal denervation in a pig model of acute infarction

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Rationale

Despite advances in treatment of acute myocardial infarction (AMI), many patients suffer significant myocardial damage with cardiac dysfunction. Sympathetic renal denervation (RD) may reduce adrenergic activation following AMI.

Objective

To investigate the potential role of RD limiting myocardial damage and remodeling when performed immediately after AMI.

Methods and results

Sixteen farm pigs underwent 90 min left anterior descending artery balloon occlusion. Eight pigs underwent RD immediately after reperfusion. LV function, extent of myocardium at risk, and myocardial necrosis were quantified by cardiac magnetic resonance 5 and 30 days after AMI. 123I-MIBG scintigraphy was performed 31 days after AMI to image myocardial sympathetic innervation. Heart norepinephrine was quantified (from necrotic, border and remote zone). RD and control did not differ in myocardium at risk extent (59 ± 9 vs 55 ± 11% of LV mass) at 5 days. At 30 days CMR, RD pigs had smaller necrotic areas than control as assessed by gadolinium delay enhancement (18 ± 7 vs 30 ± 12% of LV mass, p = 0.021) resulting in improved myocardial salvage index (60 ± 11 vs 44 ± 27%, p < 0.001). RD pigs had higher cardiac output (3.7 ± 0.8 vs 2.66 ± 0.7 L/min, p < 0.001) and lower LV end diastolic volume (98 ± 16 vs 113 ± 31 ml, p = 0.041). 123I-MIBG defect extension was smaller in RD than control (60 ± 28 vs 78 ± 17%, p < 0.05) with significant reduction in the difference between innervation and perfusion defects (25 ± 12 vs 36 ± 30%, p = 0.013). NE content from necrotic area (238; IQR 464 vs 2546; IQR 1727 ng/g in RD and control, respectively, p < 0.001) and from border zone (295; IQR 264 vs 837; IQR 207 in RD and control, respectively, p = 0.031) was significantly lower in RD than control.

Conclusions

RD results in increased myocardial salvage and better cardiac function, when performed immediately after AMI. Reduction of sympathetic activation with preservation of cardiac sympathetic functionality warranted by RD may sustain these effects.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMI:

Acute myocardial infarction

CMR:

Cardiac magnetic resonance

LAD:

Left anterior descending

LV:

Left ventricle

DE:

Delayed enhancement

NE:

Norepineprhine

RAAS:

Renin–angiotensin–aldosterone system

RD:

Renal denervation

References

  1. Maeng M, Busk M, Mortensen LS, Kristensen SD, Nielsen TT, Andersen HR, DANAMI-2 Investigators (2010) Primary angioplasty versus fibrinolysis in acute myocardial infarction: long-term follow-up in the Danish acute myocardial infarction 2 trial. Circulation 121:1484–1491. https://doi.org/10.1016/j.amjcard.2009.03.014

    Article  PubMed  Google Scholar 

  2. Rezkalla SH, Kloner RA (2002) No-reflow phenomenon. Circulation 105:656–662. https://doi.org/10.1161/hc0502.102867

    Article  PubMed  Google Scholar 

  3. Feistritzer HJ, Meyer-Saraei R, Lober C, Böhm M, Scheller B, Lauer B, Geisler T, Gawaz M, Bruch L, Klein N, Zeymer U, Eitel I, Jobs A, Freund A, Desch S, de Waha-Thiele S, Thiele H (2020) Long-term outcome after thrombus aspiration in non-ST-elevation myocardial infarction: results from the TATORT-NSTEMI trial : thrombus aspiration in acute myocardial infarction. Clin Res Cardiol. https://doi.org/10.1007/s00392-020-01613-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Backhaus SJ, Kowallick JT, Stiermaier T, Lange T, Koschalka A, Navarra JL, Lotz J, Kutty S, Bigalke B, Gutberlet M, Feistritzer HJ, Hasenfuß G, Thiele H, Schuster A, Eitel I (2020) Culprit vessel-related myocardial mechanics and prognostic implications following acute myocardial infarction. Clin Res Cardiol 109(3):339–349. https://doi.org/10.1007/s00392-019-01514-x

    Article  PubMed  Google Scholar 

  5. Hartikainen J, Fyhrquist F, Tahvanainen K, Länsimies E, Pyörälä K (1995) Baroreflex sensitivity and neurohormonal activation in patients with acute myocardial infarction. Br Heart J 74:21–26. https://doi.org/10.1136/hrt.74.1.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jardine DL, Charles CJ, Ashton RK, Bennett SI, Whitehead M, Frampton CM, Nicholls MG (2005) Increased cardiac sympathetic nerve activity following acute myocardial infarction in a sheep model. J Physiol 565:325–333. https://doi.org/10.1113/jphysiol.2004.082198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2998. https://doi.org/10.1161/01.CIR.101.25.2981

    Article  CAS  PubMed  Google Scholar 

  8. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621. https://doi.org/10.1161/01.CIR.73.4.615

    Article  CAS  PubMed  Google Scholar 

  9. DiBona GF, Sawin LL (1991) Role of renal nerves in sodium retention of cirrhosis and congestive heart failure. Am J Physiol 260:R298–305. https://doi.org/10.1152/ajpregu.1991.260.2.R298

    Article  CAS  PubMed  Google Scholar 

  10. Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, Mendelsohn FA (1998) Angiotensin receptors in the nervous system. Brain Res Bull 47:17–28. https://doi.org/10.1016/S0361-9230(98)00039-2

    Article  CAS  PubMed  Google Scholar 

  11. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, Hindricks G, Kastrati A, Lenzen MJ, Prescott E, Roffi M, Valgimigli M, Varenhorst C, Vranckx P, Widimský P, ESC Scientific Document Group (2018) 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 39:119–177. https://doi.org/10.1093/eurheartj/ehx393

    Article  PubMed  Google Scholar 

  12. Stienen S, Rossignol P, Barros A, Girerd N, Pitt B, Zannad F, Ferreira JP (2020) Determinants of anti-fibrotic response to mineralocorticoid receptor antagonist therapy: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) and Early Eplerenone Treatment in Patients with Acute ST-elevation Myocardial Infarction without Heart Failure (REMINDER) trials. Clin Res Cardiol 109(2):194–204. https://doi.org/10.1007/s00392-019-01500-3

    Article  CAS  PubMed  Google Scholar 

  13. Frankenstein L, Zugck C, Schellberg D, Nelles M, Froehlich H, Katus H, Remppis A (2009) Prevalence and prognostic significance of adrenergic escape during chronic beta-blocker therapy in chronic heart failure. Eur J Heart Fail 11:178–184. https://doi.org/10.1093/eurjhf/hfn028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Masson S, Solomon S, Angelici L, Latini R, Anand IS, Prescott M, Maggioni AP, Tognoni G, Cohn JN, Val-Heft Investigators (2010) Elevated plasma renin activity predicts adverse outcome in chronic heart failure, independently of pharmacologic therapy: data from the Valsartan Heart Failure Trial (Val-HeFT). J Card Fail 16:964–970. https://doi.org/10.1016/j.cardfail.2010.06.417

    Article  CAS  PubMed  Google Scholar 

  15. Ciardetti M, Coceani M, Pastormerlo LE, Fommei E, Ghione S, Passino C, Emdin M, Palmieri C, Berti S (2015) Renal denervation in resistant arterial hypertension: effects on neurohormonal activation and cardiac natriuretic peptides. Int J Cardiol 184:574–575. https://doi.org/10.1016/j.ijcard.2015.03.023

    Article  PubMed  Google Scholar 

  16. Polhemus DJ, Gao J, Scarborough AL, Trivedi R, McDonough KH, Goodchild TT, Smart F, Kapusta DR, Lefer DJ (2016) Radiofrequency renal denervation protects the ischemic heart via inhibition of GRK2 and increased nitric oxide signaling. Circ Res 119:470–480. https://doi.org/10.1161/CIRCRESAHA.115.308278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Polhemus DJ, Trivedi RK, Gao J, Li Z, Scarborough AL, Goodchild TT, Varner KJ, Xia H, Smart FW, Kapusta DR, Lefer DJ (2017) Renal sympathetic denervation protects the failing heart via inhibition of neprilysin activity in the kidney. J Am Coll Cardiol 70:2139–2153. https://doi.org/10.1016/j.jacc.2017.08.056

    Article  PubMed  Google Scholar 

  18. Sharp TE, Polhemus DJ, Li Z, Spaletra P, Jenkins JS, Reilly JP, White CJ, Kapusta DR, Lefer DJ, Goodchild TT (2018) Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J Am Coll Cardiol 72:2609–2621. https://doi.org/10.1016/j.jacc.2018.08.2186

    Article  PubMed  Google Scholar 

  19. Mahfoud F, Moon LB, Pipenhagen CA, Jensen JA, Pathak A, Papademetriou V, Ewen S, Linz D, Böhm M (2016) Catheter-based radio-frequency renal nerve denervation lowers blood pressure in obese hypertensive swine model. J Hypertens 34:1854–1862. https://doi.org/10.1097/hjh.0000000000001021

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22:680–685. https://doi.org/10.1038/227680a0

    Article  Google Scholar 

  21. Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL, SYMPLICITY HTN-3 Investigators (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370:1393–1401. https://doi.org/10.1056/NEJMoa1402670

    Article  CAS  PubMed  Google Scholar 

  22. Böhm M, Townsend RR, Kario K, Kandzari D, Mahfoud F, Weber MA, Schmieder RE, Tsioufis K, Hickey GL, Fahy M, DeBruin V, Brar S, Pocock S (2020) Rationale and design of two randomized sham-controlled trials of catheter-based renal denervation in subjects with uncontrolled hypertension in the absence (SPYRAL HTN-OFF MED Pivotal) and presence (SPYRAL HTN-ON MED Expansion) of antihypertensive medications: a novel approach using Bayesian design. Clin Res Cardiol 109(3):289–302. https://doi.org/10.1007/s00392-020-01595-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, Tsioufis K, Tousoulis D, Choi JW, East C, Brar S, Cohen SA, Fahy M, Pilcher G, Kario K, SPYRAL HTN-ON MED Trial Investigators (2018) Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 391:2346–2355. https://doi.org/10.1016/S0140-6736(18)30951-6

    Article  PubMed  Google Scholar 

  24. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, Basile J, Kirtane AJ, Wang Y, Lobo MD, Saxena M, Feyz L, Rader F, Lurz P, Sayer J, Sapoval M, Levy T, Sanghvi K, Abraham J, Sharp ASP, Fisher NDL, Bloch MJ, Reeve-Stoffer H, Coleman L, Mullin C, Mauri L, RADIANCE-HTN Investigators (2018) Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391:2335–2345. https://doi.org/10.1016/S0140-6736(18)31082-1

    Article  PubMed  Google Scholar 

  25. Mahfoud F, Schmieder RE, Azizi M, Pathak A, Sievert H, Tsioufis C, Zeller T, Bertog S, Blankestijn PJ, Böhm M, Burnier M, Chatellier G, Durand Zaleski I, Ewen S, Grassi G, Joner M, Kjeldsen SE, Lobo MD, Lotan C, Lüscher TF, Parati G, Rossignol P, Ruilope L, Sharif F, van Leeuwen E, Volpe M, Windecker S, Witkowski A, Wijns W (2017) Proceedings from the 2nd European Clinical Consensus Conference for device-based therapies for hypertension: state of the art and considerations for the future. Eur Heart J 38:3272–3281. https://doi.org/10.1093/eurheartj/ehx215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ukena C, Seidel T, Rizas K, Scarsi D, Millenaar D, Ewen S, Bauer A, Mahfoud F, Böhm M (2019) Effects of renal denervation on 24-h heart rate and heart rate variability in resistant hypertension. Clin Res Cardiol. https://doi.org/10.1007/s00392-019-01543-6

    Article  PubMed  Google Scholar 

  27. Linz D, Wirth K, Ukena C, Mahfoud F, Pöss J, Linz B, Böhm M, Neuberger HR (2013) Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Heart Rhythm 10:1525–1530. https://doi.org/10.1016/j.hrthm.2013.07.015

    Article  PubMed  Google Scholar 

  28. Huang B, Yu L, He B, Lu Z, Wang S, He W, Yang K, Liao K, Zhang L, Jiang H (2014) Renal sympathetic denervation modulates ventricular electrophysiology and has a protective effect on ischaemia-induced ventricular arrhythmia. Exp Physiol 99:1467–1477. https://doi.org/10.1113/expphysiol.2014.082057

    Article  PubMed  Google Scholar 

  29. Jackson N, Gizurarson S, Azam MA, King B, Ramadeen A, Zamiri N, Porta-Sánchez A, Al-Hesayen A, Graham J, Kusha M, Massé S, Lai PF, Parker J, John R, Kiehl TR, Nair GK, Dorian P, Nanthakumar K (2017) Effects of renal artery denervation on ventricular arrhythmias in a Postinfarct model. Circ Cardiovasc Interv 10:e004172. https://doi.org/10.1161/CIRCINTERVENTIONS

    Article  CAS  PubMed  Google Scholar 

116.004172.

  1. Dall’Armellina E, Karamitsos TD, Neubauer S, Choudhury RP (2017) CMR for characterization of the myocardium in acute coronary syndromes. Nat Rev Cardiol 7:624–636. https://doi.org/10.1038/nrcardio.2010.140

    Article  Google Scholar 

  2. Masci PG, Ganame J, Strata E, Desmet W, Aquaro GD, Dymarkowski S, Valenti V, Janssens S, Lombardi M, Van de Werf F, L'Abbate A, Bogaert J (2010) Myocardial salvage by CMR correlates with LV remodeling and early ST-segment resolution in acute myocardial infarction. JACC Cardiovasc Imaging 3:45–51. https://doi.org/10.1016/j.jcmg.2009.06.016

    Article  PubMed  Google Scholar 

  3. Musiolik J, van Caster P, Skyschally A, Boengler K, Gres P, Schulz R, Heusch G (2010) Reduction of infarct size by gentle reperfusion without activation of reperfusion injury salvage kinases in pigs. Cardiovasc Res 85:110–117. https://doi.org/10.1093/cvr/cvp271

    Article  CAS  PubMed  Google Scholar 

  4. Arimura T, Saku K, Kakino T, Nishikawa T, Tohyama T, Sakamoto T, Sakamoto K, Kishi T, Ide T, Sunagawa K (2017) Intravenous electrical vagal nerve stimulation prior to coronary reperfusion in a canine ischemia-reperfusion model markedly reduces infarct size and prevents subsequent heart failure. Int J Cardiol 227:704–710. https://doi.org/10.1016/j.ijcard.2016.10.074

    Article  PubMed  Google Scholar 

  5. Todd GL, Baroldi G, Pieper GM, Clayton FC, Eliot RS (1985) Experimental catecholamine induced myocardial necrosis. Morphology, quantification and regional distribution of acute contraction band lesions. J Mol Cell Cardiol 17:317–338. https://doi.org/10.1016/S0022-2828(85)80132-2

    Article  CAS  PubMed  Google Scholar 

  6. Uitterdijk A, Yetgin T, Lintel Hekkert M, Sneep S, Krabbendam-Peters I, van Beusekom HM, Fischer TM, Cornelussen RN, Manintveld OC, Merkus D, Duncker DJ (2015) Vagal nerve stimulation started just prior to reperfusion limits infarct size and no-reflow. Basic Res Cardiol 110:508. https://doi.org/10.1007/s00395-015-0508-3

    Article  PubMed  Google Scholar 

  7. Chen PS, Chen LS, Cao JM, Sharifi B, aragueuzian HS, Fishbein MC (2001) Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 50:409–416. https://doi.org/10.1016/S0008-6363(00)00308-4

    Article  CAS  PubMed  Google Scholar 

  8. Schulte L, Peters D, Taylor J, Navarro J, Kandarian S (1994) Sarcoplasmic reticulum Ca2+ pump expression in denervated heart. Am J Physiol 267:C617–622. https://doi.org/10.1152/ajpcell.1994.267.2.C617

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by research funding from Life Science Institute–Scuola Superiore Sant’Anna Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Emilio Pastormerlo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 1715 kb)

Supplementary file2 (AVI 1679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastormerlo, L.E., Burchielli, S., Ciardetti, M. et al. Myocardial salvage is increased after sympathetic renal denervation in a pig model of acute infarction. Clin Res Cardiol 110, 711–724 (2021). https://doi.org/10.1007/s00392-020-01685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-020-01685-y

Keywords

Navigation