Skip to main content

Advertisement

Log in

Non-invasive evaluation of retinal vascular remodeling and hypertrophy in humans: intricate effect of ageing, blood pressure and glycaemia

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Ageing, hypertension and diabetes have an intricate effect on microvascular structure. In the retina, the respective contribution of remodeling and hypertrophy in such process is still unclear. We aimed at disentangling age, blood pressure and glycaemia effects on retinal microcirculation using the non-invasive adaptive optics ophthalmoscopy (AOO).

Methods

We included 429 subjects, distributed into 4 groups according to normal (nBP) or high blood pressure (hBP) and/or normal (nGly) or high fasting glycaemia (hGly). The nBP/nGly group was stratified in age tertiles to isolate the effect of ageing. AOO was used to measure arteriolar wall thickness (WT, µm), arteriolar (aID, µm) and venular internal diameter (vID, µm) and calculate arteriolar wall-to-lumen ratio (WLR), wall cross-sectional area (WCSA, µm2). One-way ANOVA for parametric variables and Kruskal–Wallis test for non-parametric variables were used for comparison among groups. A multivariate regression analysis including age, gender, BP, hGly and antihypertensive treatment was performed to calculate independent predictors of retinal remodeling.

Results

WT was increased with ageing (tertile1: 22.5 ± 3.2, tertile2: 24.2 ± 3.5, tertile 3: 25.2 ± 3.8, p = 0.001) and BP (hBP: 25.2 ± 4.1 vs nBP: 23.9 ± 3.7, p = 0.003). aID decreased with BP (hBP: 90.2 ± 13.4 vs nBP: 93.6 ± 11.6, p = 0.013) and increased with glycaemia (hGly: 97.7 ± 12.5 vs nGly: 93.6 ± 11.6, p = 0.002). A multivariate analysis showed independent association of hBP with WLR; hGly with WCSA; ageing with WLR and WCSA.

Conclusions

AOO non-invasively identifies retinal structural changes in human confirming that microvascular remodeling is exclusively related to hypertension, whereas vascular growth is related to ageing and hyperglycaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material (data transparency)

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability (software application or custom code)

Not applicable.

References

  1. Climie RE, van Sloten TT, Bruno RM, Taddei S, Empana JP, Stehouwer CDA et al (2019) Macrovasculature and microvasculature at the crossroads between type 2 diabetes mellitus and hypertension. Hypertension 73(6):1138–1149

    CAS  PubMed  Google Scholar 

  2. Strain WD, Paldánius PM (2018) Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol 17(1):57

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rizzoni D, Rizzoni M, Nardin M, Chiarini G, Agabiti-Rosei C, Aggiusti C et al (2019) Vascular aging and disease of the small vessels. High Blood Press Cardiovasc Prev 26(3):183–189

    PubMed  Google Scholar 

  4. Wen SW, Wong CHY (2019) Aging- and vascular-related pathologies. Microcirculation 26(2):e12463

    PubMed  Google Scholar 

  5. Laurent S, Boutouyrie P (2015) The structural factor of hypertension. Circ Res 116(6):1007–1021

    CAS  PubMed  Google Scholar 

  6. Kamran IM, Jacqueline CMW, Johannes RV, Monique MB, Albert H, de Paulus TVMJ (2006) Retinal vessel diameters and risk of hypertension. Hypertension 47(2):189–194

    Google Scholar 

  7. Nicholas W, Tien YW, Alun DH, Nish C, Barbara EK, Richard E et al (2006) Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 47(5):975–981

    Google Scholar 

  8. Toshimi S, Hiroyasu I, Kazumasa Y, Fujiko I, Yoshiro O, Junko G et al (2011) Mild retinopathy is a risk factor for cardiovascular mortality in Japanese with and without hypertension. Circulation 124(23):2502–2511

    Google Scholar 

  9. Stehouwer CDA (2018) Microvascular dysfunction and hyperglycemia: a vicious cycle with widespread consequences. Diabetes 67(9):1729–1741

    CAS  PubMed  Google Scholar 

  10. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376(9735):124–136

    PubMed  Google Scholar 

  11. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239

    CAS  PubMed  Google Scholar 

  12. Wei Y, Jiang H, Shi Y, Qu D, Gregori G, Zheng F et al (2017) Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Invest Ophthalmol Vis Sci 58(9):3804–3817

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kotliar KE, Lanzl IM, Hanssen H, Eberhardt K, Vilser W, Halle M et al (2012) Does increased blood pressure rather than aging influence retinal pulse wave velocity? Invest Ophthalmol Vis Sci 53(4):2119–2126

    PubMed  Google Scholar 

  14. Nagaoka T, Sato E, Takahashi A, Sogawa K, Yokota H, Yoshida A (2009) Effect of aging on retinal circulation in normotensive healthy subjects. Exp Eye Res 89(6):887–891

    CAS  PubMed  Google Scholar 

  15. De Ciuceis C, Agabiti Rosei C, Caletti S, Trapletti V, Coschignano MA, Tiberio GAM et al (2018) Comparison between invasive and noninvasive techniques of evaluation of microvascular structural alterations. J Hypertens 36(5):1154–1163

    PubMed  Google Scholar 

  16. Paques M, Meimon S, Rossant F, Rosenbaum D, Mrejen S, Sennlaub F et al (2018) Adaptive optics ophthalmoscopy: application to age-related macular degeneration and vascular diseases. Prog Retin Eye Res 1(66):1–16

    Google Scholar 

  17. Schiffrin EL (2012) Vascular remodeling in hypertension: mechanisms and treatment. Hypertens Dallas Tex 1979 59(2):367–374

    CAS  Google Scholar 

  18. Bruno RM, Grassi G, Seravalle G, Savoia C, Rizzoni D, Virdis A (2018) Age- and sex-specific reference values for media/lumen ratio in small arteries and relationship with risk factors. Hypertension 71(6):1193–1200

    CAS  PubMed  Google Scholar 

  19. Rosei EA, Rizzoni D (2010) Small artery remodelling in diabetes. J Cell Mol Med 14(5):1030–1036

    PubMed  PubMed Central  Google Scholar 

  20. Lombardo M, Serrao S, Devaney N, Parravano M, Lombardo G (2012) Adaptive optics technology for high-resolution retinal imaging. Sensors 13(1):334–366

    PubMed  PubMed Central  Google Scholar 

  21. Koch E, Rosenbaum D, Brolly A, Sahel J-A, Chaumet-Riffaud P, Girerd X et al (2014) Morphometric analysis of small arteries in the human retina using adaptive optics imaging. J Hypertens 32(4):890–898

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosenbaum D, Mattina A, Koch E, Rossant F, Gallo A, Kachenoura N et al (2016) Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics. J Hypertens 34(6):1115–1122

    CAS  PubMed  Google Scholar 

  23. Rosenbaum D, Kachenoura N, Koch E, Paques M, Cluzel P, Redheuil A et al (2016) Relationships between retinal arteriole anatomy and aortic geometry and function and peripheral resistance in hypertensives. Hypertens Res 39(7):536–542

    CAS  PubMed  Google Scholar 

  24. Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ (1993) Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertens Dallas Tex 1979 21(4):391–397

    CAS  Google Scholar 

  25. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA (2001) Microcirculation in hypertension: a new target for treatment? Circulation 104(6):735–740

    CAS  PubMed  Google Scholar 

  26. Rizzoni D, Rosei EA (2006) Small artery remodeling in hypertension and diabetes. Curr Hypertens Rep 8(1):90–95

    PubMed  Google Scholar 

  27. Porteri E, Rizzoni D, Mulvany MJ, De Ciuceis C, Sleiman I, Boari GE et al (2003) Adrenergic mechanisms and remodeling of subcutaneous small resistance arteries in humans. J Hypertens 21(12):2345–2352

    CAS  PubMed  Google Scholar 

  28. Barral J-P, Croibier A (2011) 2—Circulatory physiology. In: Barral J-P, Croibier A (eds) Visceral Vascular Manipulations, Churchill Livingstone, Oxford, pp 27–45. https://www.sciencedirect.com/science/article/pii/B9780702043512000028. Accessed 8 Jul 2019

  29. Laurent S, Briet M, Boutouyrie P (2009) Large and small artery cross-talk and recent morbidity-mortality trials in hypertension. Hypertension 54(2):388–392

    CAS  PubMed  Google Scholar 

  30. Wolf M, Ewen S, Mahfoud F, Böhm M (2018) Hypertension: history and development of established and novel treatments. Clin Res Cardiol 107(Suppl 2):16–29

    PubMed  Google Scholar 

  31. Michelle LB, Peter JH, Jin WJ, Tien YW (2008) Retinal signs and stroke. Stroke 39(4):1371–1379

    Google Scholar 

  32. Wong TY, McIntosh R (2005) Systemic associations of retinal microvascular signs: a review of recent population-based studies. Ophthalmic Physiol Opt 25(3):195–204

    PubMed  Google Scholar 

  33. Heringa SM, Bouvy WH, van den Berg E, Moll AC, Kappelle LJ, Biessels GJ (2013) Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review. J Cereb Blood Flow Metab 33(7):983–995

    PubMed  PubMed Central  Google Scholar 

  34. Rizzoni D, Porteri E, Guelfi D, Muiesan ML, Valentini U, Cimino A et al (2001) Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation 103(9):1238–1244

    CAS  PubMed  Google Scholar 

  35. Bakker W, Eringa EC, Sipkema P, van Hinsbergh VWM (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 335(1):165–189

    CAS  PubMed  Google Scholar 

  36. Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206(4):319–348

    PubMed  PubMed Central  Google Scholar 

  37. Laties AM (1967) Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol Chic Ill 1960 77(3):405–409

    CAS  Google Scholar 

  38. Jumar A, Ott C, Kistner I, Friedrich S, Michelson G, Harazny JM et al (2016) Early signs of end-organ damage in retinal arterioles in patients with type 2 diabetes compared to hypertensive patients. Microcirculation 23(6):447–455

    CAS  PubMed  Google Scholar 

  39. Kannenkeril D, Bosch A, Harazny J, Karg M, Jung S, Ott C, et al. (2018) Early vascular parameters in the micro- and macrocirculation in type 2 diabetes. Cardiovasc Diabetol. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146516/. Accessed 15 Jan 2020

  40. Liew G, Sharrett AR, Kronmal R, Klein R, Wong TY, Mitchell P et al (2007) Measurement of retinal vascular caliber: issues and alternatives to using the arteriole to venule ratio. Invest Ophthalmol Vis Sci 48(1):52–57

    PubMed  Google Scholar 

  41. Nguyen TT, Wang JJ, Islam FMA, Mitchell P, Tapp RJ, Zimmet PZ et al (2008) Retinal arteriolar narrowing predicts incidence of diabetes: the australian diabetes, obesity and lifestyle (AusDiab) study. Diabetes 57(3):536–539

    CAS  PubMed  Google Scholar 

  42. Nguyen TT, Wang JJ, Sharrett AR, Islam FMA, Klein R, Klein BEK et al (2008) Relationship of retinal vascular caliber with diabetes and retinopathy: the multi-ethnic study of atherosclerosis (MESA). Diabetes Care 31(3):544–549

    CAS  PubMed  Google Scholar 

  43. Unal M, Kamran IM, Frank JW, Albert H, Caroline CWK, Arfan IM (2016) Retinal microvasculature is associated with long-term survival in the general adult Dutch population. Hypertension 67(2):281–287

    Google Scholar 

  44. Klein R, Klein BEK, Moss SE, Wong TY (2007) Retinal vessel caliber and microvascular and macrovascular disease in type 2 diabetes: XXI: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology 114(10):1884–1892

    PubMed  Google Scholar 

  45. Axel RP, Bettina R, Timothy WS (2005) Remodeling of blood vessels. Hypertension 46(4):725–731

    Google Scholar 

  46. Leopold JA (2014) Microvascular dysfunction: genetic polymorphisms suggest sex-specific differences in disease phenotype. Coron Artery Dis 25(4):275–276

    PubMed  PubMed Central  Google Scholar 

  47. Halland H, Lønnebakken MT, Pristaj N, Saeed S, Midtbø H, Einarsen E et al (2018) Sex differences in subclinical cardiac disease in overweight and obesity (the FATCOR study). Nutr Metab Cardiovasc Dis NMCD 28(10):1054–1060

    CAS  PubMed  Google Scholar 

  48. Sasongko MB, Wong TY, Nguyen TT, Kawasaki R, Jenkins AJ, Shaw J et al (2012) Serum apolipoproteins are associated with systemic and retinal microvascular function in people with diabetes. Diabetes 61(7):1785–1792

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to thank Dr Alessandro Mattina and Mrs Caroline Kanagasabapathy for their help in the image acquisition; Dr David Rosenbaum for his scientific support; We gratefully acknowledge the expert technical assistance of Mr Nicolas Chateau, Mr Laurent Vabre and Ms Martine Durand.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

AG conceived and designed the research, acquired the data, performed statistical analysis and wrote the first draft of the manuscript. TD performed statistical analysis and contributed to the first draft and critical revision of the manuscript. AGi contributed to data analysis and made critical revision of the manuscript. MP and NK made critical revision of the manuscript for key intellectual content. XG conceived and designed the research, acquired the data, handled funding and supervision and made critical revision of the manuscript for key intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Antonio Gallo.

Ethics declarations

Conflicts of interest

AG declares having received honoraria from Akcea, AMGEN, Mylan, Novartis, Sanofi and Regeneron, Unilever (none of them related to this work); XG declares having received honoraria from Sanofi, Novartis and Recordati. The remaining authors declare that they have no competing interests.

Ethics approval and consent to participate

Approval of the Ethics Committee of the Saint-Antoine hospital (Paris, France) was obtained. This research was supported by the French Institute of Health and Medical Research (Institut National de la Santé et de la Recherche Médicale, INSERM; No. C10-03 No. IDRCB 2010-A00492-37).

Consent for publication

All study participants consented to participating in this study, and having their results published as part of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, A., Dietenbeck, T., Giron, A. et al. Non-invasive evaluation of retinal vascular remodeling and hypertrophy in humans: intricate effect of ageing, blood pressure and glycaemia. Clin Res Cardiol 110, 959–970 (2021). https://doi.org/10.1007/s00392-020-01680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-020-01680-3

Keywords

Navigation