Hypoxia induces de novo formation of cerebral collaterals and lessens the severity of ischemic stroke

J Cereb Blood Flow Metab. 2020 Sep;40(9):1806-1822. doi: 10.1177/0271678X20924107. Epub 2020 May 19.

Abstract

Pial collaterals provide protection in stroke. Evidence suggests their formation late during gestation (collaterogenesis) is driven by reduced oxygen levels in the cerebral watersheds. The purpose of this study was to determine if collaterogenesis can be re-activated in the adult to induce formation of additional collaterals ("neo-collateral formation", NCF). Mice were gradually acclimated to reduced inspired oxygen (FIO2) and maintained at 12, 10, 8.5 or 7% for two-to-eight weeks. Hypoxemia induced "dose"-dependent NCF and remodeling of native collaterals, and decreased infarct volume after permanent MCA occlusion. In contrast, no formation occurred of addition collateral-like intra-tree anastomoses, PComs, or branches within the MCA tree. Hypoxic NCF, remodeling and infarct protection were durable, i.e. retained for at least six weeks after return to normoxia. Hypoxia increased expression of Hif2α, Vegfa, Rabep2, Angpt2, Tie2 and Cxcr4. Neo-collateral formation was abolished in mice lacking Rabep2, a novel gene involved in VEGFA→Flk1 signaling and required for formation of collaterals during development, and inhibited by knockdown of Vegfa, Flk1 and Cxcr4. Rabep2-dependent NCF was also induced by permanent MCA occlusion. This is the first report that hypoxia induces new pial collaterals to form. Hypoxia- and occlusion-induced neo-collateral formation provide models to study collaterogenesis in the adult.

Keywords: Collateral circulation; angiogenesis; cerebral circulation; hypoxia; ischemic stroke.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cerebral Veins / pathology
  • Cerebrovascular Circulation* / genetics
  • Collateral Circulation* / genetics
  • Gene Expression Regulation / genetics
  • Hypoxia / pathology
  • Hypoxia, Brain / genetics
  • Hypoxia, Brain / pathology*
  • Infarction, Middle Cerebral Artery / pathology
  • Ischemic Stroke / genetics
  • Ischemic Stroke / pathology*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neovascularization, Physiologic