Research
3D whole-heart isotropic sub-millimeter resolution coronary magnetic resonance angiography with non-rigid motion-compensated PROST

https://doi.org/10.1186/s12968-020-00611-5Get rights and content
Under a Creative Commons license
open access

Abstract

Background

To enable free-breathing whole-heart sub-millimeter resolution coronary magnetic resonance angiography (CMRA) in a clinically feasible scan time by combining low-rank patch-based undersampled reconstruction (3D-PROST) with a highly accelerated non-rigid motion correction framework.

Methods

Non-rigid motion corrected CMRA combined with 2D image-based navigators has been previously proposed to enable 100% respiratory scan efficiency in modestly undersampled acquisitions. Achieving sub-millimeter isotropic resolution with such techniques still requires prohibitively long acquisition times. We propose to combine 3D-PROST reconstruction with a highly accelerated non-rigid motion correction framework to achieve sub-millimeter resolution CMRA in less than 10 min. Ten healthy subjects and eight patients with suspected coronary artery disease underwent 4–5-fold accelerated free-breathing whole-heart CMRA with 0.9 mm3 isotropic resolution. Vessel sharpness, vessel length and image quality obtained with the proposed non-rigid (NR) PROST approach were compared against translational correction only (TC-PROST) and a previously proposed NR motion-compensated technique (non-rigid SENSE) in healthy subjects. For the patient study, image quality scoring and visual comparison with coronary computed tomography angiography (CCTA) were performed.

Results

Average scan times [min:s] were 6:01 ± 0:59 (healthy subjects) and 8:29 ± 1:41 (patients). In healthy subjects, vessel sharpness of the left anterior descending (LAD) and right (RCA) coronary arteries were improved with the proposed non-rigid PROST (LAD: 51.2 ± 8.8%, RCA: 61.2 ± 9.1%) in comparison to TC-PROST (LAD: 43.8 ± 5.1%, P = 0.051, RCA: 54.3 ± 8.3%, P = 0.218) and non-rigid SENSE (LAD: 46.1 ± 5.8%, P = 0.223, RCA: 56.7 ± 9.6%, P = 0.50), although differences were not statistically significant. The average visual image quality score was significantly higher for NR-PROST (LAD: 3.2 ± 0.6, RCA: 3.3 ± 0.7) compared with TC-PROST (LAD: 2.1 ± 0.6, P = 0.018, RCA: 2.0 ± 0.7, P = 0.014) and non-rigid SENSE (LAD: 2.3 ± 0.5, P = 0.008, RCA: 2.5 ± 0.7, P = 0.016). In patients, the proposed approach showed good delineation of the coronaries, in agreement with CCTA, with image quality scores and vessel sharpness similar to that of healthy subjects.

Conclusions

We demonstrate the feasibility of combining high undersampling factors with non-rigid motion-compensated reconstruction to obtain high-quality sub-millimeter isotropic CMRA images in ~ 8 min. Validation in a larger cohort of patients with coronary artery disease is now warranted.

Keywords

Accelerated imaging
Coronary MR angiography
Isotropic sub-millimeter resolution. PROST reconstruction non-rigid motion compensation

Cited by (0)