Skip to main content

Advertisement

Log in

Impact of ultra-marathon and marathon on biomarkers of myocyte necrosis and cardiac congestion: a prospective observational study

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

An elevation of cardiac biomarkers is observed after intense or long-lasting physical activity. However, a recent meta-analysis has suggested that there might be an inverse relationship between duration of exercise and degree of biomarker elevation. The objective of this observational study was to investigate the impact of ultra-marathon (UM) vs. marathon (M) on biomarkers of myocyte necrosis and hemodynamic stress/congestion.

Methods

Well-trained endurance athletes were recruited to participate in a 130-km UM and a M run. Troponin I (TnI), creatine kinase (CK), N-terminal pro-brain natriuretic peptide (NT-proBNP), mid-regional pro-adrenomedullin (MR-proADM), and copeptin were measured after both events, respectively.

Results

Fifteen athletes (14 males, one female) were included. There was no difference in exercise intensity according to the Borg scale (UM 16 [IQR 15–17], M 16 [IQR 14–17]; p = 0.424). Biomarkers of myocyte necrosis both differed significantly with higher levels of TnI (UM 0.056 ng/L [IQR 0.022–0.104), M 0.028 ng/L [IQR 0.022–0.049]; p = 0.016) and CK (UM 6992 U/l [IQR 2886–23038], M 425 U/l [IQR 327–681]; p = 0.001) after UM compared to M. Also, NT-proBNP (UM 723 ng/L [IQR 378–1152], M 132 ng/L [IQR 64–198]; p = 0.001) and MR-proADM (UM 1.012 nmol/L [IQR 0.753–0.975], M 0.877 nmol/L [IQR 0.550–0.985]; p = 0.023) as markers of myocardial congestion were significantly higher after UM. There was a tendency for elevated copeptin levels after M, but did not reach statistical significance (p = 0.078).

Conclusion

Ultra-marathon is associated with higher levels of biomarkers of myocyte necrosis and cardiac congestion compared to marathon, highlighting the impact of exercise duration on the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boulé NG, Haddad E, Kenny GP et al (2001) Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 286:1218–1227

    Article  Google Scholar 

  2. Kelley G (2004) Walking, lipids, and lipoproteins: a meta-analysis of randomized controlled trials. Prev Med (Baltim) 38:651–661. https://doi.org/10.1016/j.ypmed.2003.12.012

    Article  CAS  Google Scholar 

  3. Börjesson M, Onerup A, Lundqvist S, Dahlöf B (2016) Physical activity and exercise lower blood pressure in individuals with hypertension: narrative review of 27 RCTs. Br J Sports Med 50:356–361. https://doi.org/10.1136/bjsports-2015-095786

    Article  PubMed  Google Scholar 

  4. Tanasescu M, Leitzmann MF, Rimm EB et al (2002) Exercise type and intensity in relation to coronary heart disease in men. JAMA 288:1994–2000

    Article  Google Scholar 

  5. Scheer V (2019) Participation trends of ultra endurance events. Sports Med Arthrosc 27:3–7. https://doi.org/10.1097/JSA.0000000000000198

    Article  PubMed  Google Scholar 

  6. Dawson E, George K, Shave R et al (2003) Does the human heart fatigue subsequent to prolonged exercise? Sport Med 33:365–380

    Article  Google Scholar 

  7. La Gerche A, Heidbuchel H (2014) Can intensive exercise harm the heart? You can get too much of a good thing. Circulation 130:992–1002. https://doi.org/10.1161/CIRCULATIONAHA.114.008141

    Article  PubMed  Google Scholar 

  8. Shave R, Baggish A, George K et al (2010) Exercise-induced cardiac troponin elevation. J Am Coll Cardiol 56:169–176. https://doi.org/10.1016/j.jacc.2010.03.037

    Article  CAS  PubMed  Google Scholar 

  9. Siegel AJ, Silverman LM, Evans WJ (1983) Elevated skeletal muscle creatine kinase MB isoenzyme levels in marathon runners. JAMA 250:2835–2837

    Article  CAS  Google Scholar 

  10. Vargas KG, Kassem M, Mueller C et al (2016) Copeptin for the early rule-out of non-ST-elevation myocardial infarction. Int J Cardiol 223:797–804. https://doi.org/10.1016/j.ijcard.2016.08.304

    Article  PubMed  Google Scholar 

  11. Neilan TG, Januzzi JL, Lee-Lewandrowski E et al (2006) Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 114:2325–2333. https://doi.org/10.1161/CIRCULATIONAHA.106.647461

    Article  PubMed  Google Scholar 

  12. Breuckmann F, Möhlenkamp S, Nassenstein K et al (2009) Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology 251:50–57. https://doi.org/10.1148/radiol.2511081118

    Article  PubMed  Google Scholar 

  13. Mohlenkamp S, Lehmann N, Breuckmann F et al (2008) Running: the risk of coronary events: prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J 29:1903–1910. https://doi.org/10.1093/eurheartj/ehn163

    Article  PubMed  Google Scholar 

  14. Gresslien T, Agewall S (2016) Troponin and exercise. Int J Cardiol 221:609–621. https://doi.org/10.1016/j.ijcard.2016.06.243

    Article  CAS  PubMed  Google Scholar 

  15. Shave R, George KP, Atkinson G et al (2007) Exercise-induced cardiac troponin T release: a meta-analysis. Med Sci Sports Exerc 39:2099–2106. https://doi.org/10.1249/mss.0b013e318153ff78

    Article  CAS  PubMed  Google Scholar 

  16. Eijsvogels TMH, Hoogerwerf MD, Oudegeest-Sander MH et al (2014) The impact of exercise intensity on cardiac troponin I release. Int J Cardiol 171:e3–e4. https://doi.org/10.1016/j.ijcard.2013.11.050

    Article  PubMed  Google Scholar 

  17. Eijsvogels T, George K, Shave R et al (2010) Effect of prolonged walking on cardiac troponin levels. Am J Cardiol 105:267–272. https://doi.org/10.1016/j.amjcard.2009.08.679

    Article  CAS  PubMed  Google Scholar 

  18. Lara B, Salinero JJ, Gallo-Salazar C et al (2019) Elevation of cardiac troponins after endurance running competitions. Circulation 139:709–711. https://doi.org/10.1161/CIRCULATIONAHA.118.034655

    Article  PubMed  Google Scholar 

  19. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    CAS  PubMed  Google Scholar 

  20. Eijsvogels TMH, Fernandez AB, Thompson PD (2016) Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol Rev 96:99–125. https://doi.org/10.1152/physrev.00029.2014

    Article  PubMed  Google Scholar 

  21. Feng J, Schaus BJ, Fallavollita JA et al (2001) Preload induces troponin I degradation independently of myocardial ischemia. Circulation 103:2035–2037. https://doi.org/10.1161/01.cir.103.16.2035

    Article  CAS  PubMed  Google Scholar 

  22. Boström P, Mann N, Wu J et al (2010) C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143:1072–1083. https://doi.org/10.1016/j.cell.2010.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abdulla J, Nielsen JR (2009) Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace 11:1156–1159. https://doi.org/10.1093/europace/eup197

    Article  PubMed  Google Scholar 

  24. Baldesberger S, Bauersfeld U, Candinas R et al (2007) Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists. Eur Heart J 29:71–78. https://doi.org/10.1093/eurheartj/ehm555

    Article  PubMed  Google Scholar 

  25. La Gerche A, Burns AT, Mooney DJ et al (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33:998–1006. https://doi.org/10.1093/eurheartj/ehr397

    Article  CAS  PubMed  Google Scholar 

  26. Andersen K, Farahmand B, Ahlbom A et al (2013) Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study. Eur Heart J 34:3624–3631. https://doi.org/10.1093/eurheartj/eht188

    Article  PubMed  Google Scholar 

  27. Scharhag J, Herrmann M, Urhausen A et al (2005) Independent elevations of N-terminal pro-brain natriuretic peptide and cardiac troponins in endurance athletes after prolonged strenuous exercise. Am Heart J 150:1128–1134. https://doi.org/10.1016/j.ahj.2005.01.051

    Article  CAS  PubMed  Google Scholar 

  28. Rifai N, Douglas PS, O’Toole M et al (1999) Cardiac troponin T and I, electrocardiographic wall motion analyses, and ejection fractions in athletes participating in the Hawaii Ironman Triathlon. Am J Cardiol 83:1085–1089. https://doi.org/10.1016/S0002-9149(99)00020-X

    Article  CAS  PubMed  Google Scholar 

  29. Neumayr G, Pfister R, Mitterbauer G et al (2005) Effect of competitive marathon cycling on plasma N-terminal pro-brain natriuretic peptide and cardiac troponin T in healthy recreational cyclists. Am J Cardiol 96:732–735. https://doi.org/10.1016/j.amjcard.2005.04.054

    Article  CAS  PubMed  Google Scholar 

  30. Siegel AJ, Silverman LM, Lopez RE (1980) Creatine kinase elevations in marathon runners: relationship to training and competition. Yale J Biol Med 53:275–279

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lippi G, Schena F, Salvagno GL et al (2015) Serum copeptin and midregion proadrenomedullin (MR-proADM) after an ultramarathon. J Clin Lab Anal 29:15–20. https://doi.org/10.1002/jcla.21720

    Article  CAS  PubMed  Google Scholar 

  32. Mingels AMA, Jacobs LHJ, Kleijnen VW et al (2010) Cardiac troponin T elevations, using highly sensitive assay, in recreational running depend on running distance. Clin Res Cardiol 99:385–391. https://doi.org/10.1007/s00392-010-0134-x

    Article  CAS  PubMed  Google Scholar 

  33. Eijsvogels TMH, Hoogerwerf MD, Maessen MFH et al (2015) Predictors of cardiac troponin release after a marathon. J Sci Med Sport 18:88–92. https://doi.org/10.1016/j.jsams.2013.12.002

    Article  PubMed  Google Scholar 

  34. Wiese S, Breyer T, Dragu A et al (2000) Gene expression of brain natriuretic peptide in isolated atrial and ventricular human myocardium: influence of angiotensin II and diastolic fiber length. Circulation 102:3074–3079

    Article  CAS  Google Scholar 

  35. Serrano-Ostáriz E, Terreros-Blanco JL, Legaz-Arrese A et al (2011) The impact of exercise duration and intensity on the release of cardiac biomarkers. Scand J Med Sci Sport 21:244–249. https://doi.org/10.1111/j.1600-0838.2009.01042.x

    Article  Google Scholar 

  36. Morgenthaler NG, Struck J, Alonso C, Bergmann A (2005) Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin Chem 51:1823–1829. https://doi.org/10.1373/clinchem.2005.051110

    Article  CAS  PubMed  Google Scholar 

  37. Kato J, Kitamura K (2015) Bench-to-bedside pharmacology of adrenomedullin. Eur J Pharmacol 764:140–148

    Article  CAS  Google Scholar 

  38. Masson S, Latini R, Carbonieri E et al (2010) The predictive value of stable precursor fragments of vasoactive peptides in patients with chronic heart failure: data from the GISSI-heart failure (GISSI-HF) trial. Eur J Heart Fail 12:338–347. https://doi.org/10.1093/eurjhf/hfp206

    Article  CAS  PubMed  Google Scholar 

  39. Klip IT, Voors AA, Anker SD et al (2011) Prognostic value of mid-regional pro-adrenomedullin in patients with heart failure after an acute myocardial infarction. Heart 97:892–898. https://doi.org/10.1136/hrt.2010.210948

    Article  CAS  PubMed  Google Scholar 

  40. Roffi M, Patrono C, Collet J-P et al (2015) 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 32:2999–3054

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Association for the Promotion of Research on Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB) and by the Ludwig Boltzmann Cluster for Cardiovascular Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Huber.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest with this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wegberger, C., Tscharre, M., Haller, P.M. et al. Impact of ultra-marathon and marathon on biomarkers of myocyte necrosis and cardiac congestion: a prospective observational study. Clin Res Cardiol 109, 1366–1373 (2020). https://doi.org/10.1007/s00392-020-01634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-020-01634-9

Keywords

Navigation