Skip to main content
Log in

Prognostic impact of plasma volume estimated from hemoglobin and hematocrit in heart failure with preserved ejection fraction

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Plasma volume (PV) estimated from Duarte's formula (based on hemoglobin/hematocrit) has been associated with poor prognosis in patients with heart failure (HF). There are, however, limited data regarding the association of estimated PV status (ePVS) derived from hemoglobin/hematocrit with clinical profiles and study outcomes in patients with HF and preserved ejection fraction (HFpEF).

Methods and results

Patients from North and South America enrolled in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial (TOPCAT) with available hemoglobin/hematocrit data were studied. The association between ePVS (Duarte formula and Hakim formula) and the composite of cardiovascular mortality, HF hospitalization, or aborted cardiac arrest was assessed. Among 1747 patients (age 71.6 years; males 50.1%), mean ePVS derived from Duarte formula was 4.9 ± 1.0 mL/g. Higher Duarte-derived ePVS was associated with prior HF admission, diabetes, more severe congestion, poor renal function, higher natriuretic peptide level, and E/e'. After adjustment for potential covariates including natriuretic peptide, higher Duarte-derived ePVS was associated with an increased rate of the primary outcome [highest vs. lowest ePVS quartile: adjusted-HR (95%CI) = 1.79 (1.28–2.50), p < 0.001]. Duarte-derived ePVS improved prognostic performance on top of clinical and routine variables (including natriuretic peptides) (NRI = 11, p < 0.001), whereas Hakim-derived ePVS did not (p = 0.59). The prognostic value of Duarte-derived ePVS was not modified by renal function (P interaction > 0.10 for all outcomes).

Conclusion

ePVS from Duarte’s formula was associated with congestion status and improved risk stratification regardless of renal function. Our findings suggest that Duarte-derived ePVS is a useful congestion variable in patients with HFpEF.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Girerd N, Seronde MF, Coiro S, Chouihed T, Bilbault P, Braun F, Kenizou D, Maillier B, Nazeyrollas P, Roul G, Fillieux L, Abraham WT, Januzzi J Jr, Sebbag L, Zannad F, Mebazaa A, Rossignol P (2018) Integrative assessment of congestion in heart failure throughout the patient journey. JACC Heart Fail 6:273–285

    Article  Google Scholar 

  2. Pokorney SD, Al-Khatib SM, Sun JL, Schulte P, O'Connor CM, Teerlink JR, Armstrong PW, Ezekowitz JA, Starling RC, Voors AA, Velazquez EJ, Hernandez AF, Mentz RJ (2018) Sudden cardiac death after acute heart failure hospital admission: insights from ASCEND-HF. Eur J Heart Fail 20:525–532

    Article  Google Scholar 

  3. Gheorghiade M, Follath F, Ponikowski P, Barsuk JH, Blair JE, Cleland JG, Dickstein K, Drazner MH, Fonarow GC, Jaarsma T, Jondeau G, Sendon JL, Mebazaa A, Metra M, Nieminen M, Pang PS, Seferovic P, Stevenson LW, van Veldhuisen DJ, Zannad F, Anker SD, Rhodes A, McMurray JJ, European Society of C, and European Society of Intensive Care M (2010) Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail 12:423–433

    Article  Google Scholar 

  4. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, Strickland W, Neelagaru S, Raval N, Krueger S, Weiner S, Shavelle D, Jeffries B, Yadav JS (2011) Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377:658–666

    Article  Google Scholar 

  5. Ambrosy AP, Pang PS, Khan S, Konstam MA, Fonarow GC, Traver B, Maggioni AP, Cook T, Swedberg K, Burnett JC Jr, Grinfeld L, Udelson JE, Zannad F, Gheorghiade M (2013) Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial. Eur Heart J 34:835–843

    Article  Google Scholar 

  6. Coiro S, Girerd N, Rossignol P, Ferreira JP, Maggioni A, Pitt B, Tritto I, Ambrosio G, Dickstein K, Zannad F (2016) Association of beta-blocker treatment with mortality following myocardial infarction in patients with chronic obstructive pulmonary disease and heart failure or left ventricular dysfunction: a propensity matched-cohort analysis from the High-Risk Myocardial Infarction Database Initiative. Eur J Heart Fail 19:271–279

    Article  Google Scholar 

  7. Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, Kubo SH, Rudin-Toretsky E, Yusuf S (1990) Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 82:1724–1729

    Article  CAS  Google Scholar 

  8. Miller WL (2016) Fluid volume overload and congestion in heart failure: time to reconsider pathophysiology and how volume is assessed. Circ Heart Fail 9:e002922

    Article  CAS  Google Scholar 

  9. Kaplan E, Puestow RC, Baker LA, Kruger S (1954) Blood volume in congestive heart failure as determined with iodinated human serum albumin. Am Heart J 47:824–838

    Article  CAS  Google Scholar 

  10. Duarte K, Monnez JM, Albuisson E, Pitt B, Zannad F, Rossignol P (2015) Prognostic value of estimated plasma volume in heart failure. JACC Heart Fail 3:886–893

    Article  Google Scholar 

  11. Ling HZ, Flint J, Damgaard M, Bonfils PK, Cheng AS, Aggarwal S, Velmurugan S, Mendonca M, Rashid M, Kang S, Papalia F, Weissert S, Coats CJ, Thomas M, Kuskowski M, Cohn JN, Woldman S, Anand IS, Okonko DO (2015) Calculated plasma volume status and prognosis in chronic heart failure. Eur J Heart Fail 17:35–43

    Article  CAS  Google Scholar 

  12. Kobayashi M, Rossignol P, Ferreira JP, Aragao I, Paku Y, Iwasaki Y, Watanabe M, Fudim M, Duarte K, Zannad F, Girerd N (2018) Prognostic value of estimated plasma volume in acute heart failure in three cohort studies. Clin Res Cardiol 108:549–561

    Article  Google Scholar 

  13. Chouihed T, Rossignol P, Bassand A, Duarte K, Kobayashi M, Jaeger D, Sadoune S, Buessler A, Nace L, Giacomin G, Hutter T, Barbe F, Salignac S, Jay N, Zannad F, Girerd N (2018) Diagnostic and prognostic value of plasma volume status at emergency department admission in dyspneic patients: results from the PARADISE cohort. Clin Res Cardiol 108:563–573

    Article  Google Scholar 

  14. Yoshihisa A, Abe S, Sato Y, Watanabe S, Yokokawa T, Miura S, Misaka T, Sato T, Suzuki S, Oikawa M, Kobayashi A, Yamaki T, Kunii H, Saitoh SI, Takeishi Y (2017) Plasma volume status predicts prognosis in patients with acute heart failure syndromes. Eur Heart J Acute Cardiovasc Care 7:330–338

    Article  Google Scholar 

  15. Balderston JR, Shah KB, Paciulli SC, Gertz ZM (2018) Usefulness of estimated plasma volume at postdischarge follow-up to predict recurrent events in patients with heart failure. Am J Cardiol 122:1191–1194

    Article  Google Scholar 

  16. Kobayashi M, Bercker M, Huttin O, Pierre S, Sadoul N, Bozec E, Chouihed T, Ferreira JP, Zannad F, Rossignol P, Girerd N (2019) Chest X-ray quantification of admission lung congestion as a prognostic factor in patients admitted for worsening heart failure from the ICALOR cohort study. Int J Cardiol 299:192–198

    Article  Google Scholar 

  17. Miller WL, Mullan BP (2016) Volume overload profiles in patients with preserved and reduced ejection fraction chronic heart failure: are there differences? A Pilot Study. JACC Heart Fail 4:453–459

    Article  Google Scholar 

  18. Takei M, Kohsaka S, Shiraishi Y, Goda A, Izumi Y, Yagawa M, Mizuno A, Sawano M, Inohara T, Kohno T, Fukuda K, Yoshikawa T, West Tokyo Heart Failure Registry I (2015) Effect of estimated plasma volume reduction on renal function for acute heart failure differs between patients with preserved and reduced ejection fraction. Circ Heart Fail 8:527–532

    Article  Google Scholar 

  19. Huang CY, Lin TT, Wu YF, Chiang FT, Wu CK (2019) Long-term Prognostic Value of Estimated Plasma Volume in Heart Failure with Preserved Ejection Fraction. Sci Rep 9:14369

    Article  Google Scholar 

  20. Grodin JL, Philips S, Mullens W, Nijst P, Martens P, Fang JC, Drazner MH, Tang WHW, Pandey A (2019) Prognostic implications of plasma volume status estimates in heart failure with preserved ejection fraction: insights from TOPCAT. Eur J Heart Fail. https://doi.org/10.1002/ejhf.1407

    Article  PubMed  Google Scholar 

  21. Kobayashi M, Huttin O, Donal E, Duarte K, Hubert A, Le Breton H et al (2020) Association of estimated plasma volume status with hemodynamic andechocardiographic parameters. Clin Res Cardiol. https://doi.org/10.1007/s00392-020-01599-9

    Article  PubMed  Google Scholar 

  22. Okonko DO, Jouhra F, Abu-Own H, Filippatos G, Colet JC, Suki C, Mori C, Ponikowski P, Anker SD (2019) Effect of ferric carboxymaltose on calculated plasma volume status and clinical congestion: a FAIR-HF substudy. ESC Heart Fail 6:621–628

    Article  Google Scholar 

  23. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, Clausell N, Desai AS, Diaz R, Fleg JL, Gordeev I, Harty B, Heitner JF, Kenwood CT, Lewis EF, O'Meara E, Probstfield JL, Shaburishvili T, Shah SJ, Solomon SD, Sweitzer NK, Yang S, McKinlay SM (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370:1383–1392

    Article  CAS  Google Scholar 

  24. Pfeffer MA, Claggett B, Assmann SF, Boineau R, Anand IS, Clausell N, Desai AS, Diaz R, Fleg JL, Gordeev I, Heitner JF, Lewis EF, O'Meara E, Rouleau JL, Probstfield JL, Shaburishvili T, Shah SJ, Solomon SD, Sweitzer NK, McKinlay SM, Pitt B (2015) Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation 131:34–42

    Article  CAS  Google Scholar 

  25. Strauss MB, Davis RK, Rosenbaum JD, Rossmeisl EC (1951) Water diuresis produced during recumbency by the intravenous infusion of isotonic saline solution. J Clin Invest 30:862–868

    Article  CAS  Google Scholar 

  26. Rm H (2001) Plasmapheresis. Handbook of dialysis. Lippincott. Williams and Wilkins, Philadelphia

  27. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 130:461–470

    Article  CAS  Google Scholar 

  28. Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496–509

    Article  Google Scholar 

  29. Uno H, Tian L, Cai T, Kohane IS, Wei LJ (2013) A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data. Stat Med 32:2430–2442

    Article  Google Scholar 

  30. Ambrosy AP, Cerbin LP, Armstrong PW, Butler J, Coles A, DeVore AD, Dunlap ME, Ezekowitz JA, Felker GM, Fudim M, Greene SJ, Hernandez AF, O'Connor CM, Schulte P, Starling RC, Teerlink JR, Voors AA, Mentz RJ (2017) Body weight change during and after hospitalization for acute heart failure: patient characteristics, markers of congestion, and outcomes: findings from the ASCEND-HF Trial. JACC Heart Fail 5:1–13

    Article  Google Scholar 

  31. Anker SD, Negassa A, Coats AJS, Afzal R, Poole-Wilson PA, Cohn JN, Yusuf S (2003) Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet 361:1077–1083

    Article  CAS  Google Scholar 

  32. Abramov D, Cohen RS, Katz SD, Mancini D, Maurer MS (2008) Comparison of blood volume characteristics in anemic patients with low versus preserved left ventricular ejection fractions. Am J Cardiol 102:1069–1072

    Article  Google Scholar 

  33. Schwartzenberg S, Redfield MM, From AM, Sorajja P, Nishimura RA, Borlaug BA (2012) Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol 59:442–451

    Article  Google Scholar 

  34. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP (2010) Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122:265–272

    Article  Google Scholar 

  35. Greene SJ, Gheorghiade M, Vaduganathan M, Ambrosy AP, Mentz RJ, Subacius H, Maggioni AP, Nodari S, Konstam MA, Butler J, Filippatos G, Investigators ET (2013) Haemoconcentration, renal function, and post-discharge outcomes among patients hospitalized for heart failure with reduced ejection fraction: insights from the EVEREST trial. Eur J Heart Fail 15:1401–1411

    Article  CAS  Google Scholar 

  36. van der Meer P, Postmus D, Ponikowski P, Cleland JG, O'Connor CM, Cotter G, Metra M, Davison BA, Givertz MM, Mansoor GA, Teerlink JR, Massie BM, Hillege HL, Voors AA (2013) The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J Am Coll Cardiol 61:1973–1981

    Article  Google Scholar 

  37. Pellicori P, Shah P, Cuthbert J, Urbinati A, Zhang J, Kallvikbacka-Bennett A, Clark AL, Cleland JGF (2019) Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. Eur J Heart Fail 21:904–916

    Article  CAS  Google Scholar 

  38. Melenovsky V, Andersen MJ, Andress K, Reddy YN, Borlaug BA (2015) Lung congestion in chronic heart failure: haemodynamic, clinical, and prognostic implications. Eur J Heart Fail 17:1161–1171

    Article  CAS  Google Scholar 

  39. Daniels LB, Maisel AS (2007) Natriuretic peptides. J Am Coll Cardiol 50:2357–2368

    Article  CAS  Google Scholar 

  40. Montero D, Lundby C, Ruschitzka F, Flammer AJ (2017) True anemia-red blood cell volume deficit-in heart failure: a systematic review. Circ HeartFail. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003610

    Article  Google Scholar 

  41. Kalra PR, Anagnostopoulos C, Bolger AP, Coats AJS, Anker SD (2002) The regulation and measurement of plasma volume in heart failure. J Am Coll Cardiol 39:1901–1908

    Article  Google Scholar 

  42. Zannad F, Rossignol P (2018) Cardiorenal Syndrome Revisited. Circulation 138:929–944

    Article  Google Scholar 

  43. Rossignol P, Menard J, Fay R, Gustafsson F, Pitt B, Zannad F (2011) Eplerenone survival benefits in heart failure patients post-myocardial infarction are independent from its diuretic and potassium-sparing effects. Insights from an EPHESUS (Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study). J Am Coll Cardiol. 58:1958–1966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The TOPCAT trial was funded and sponsored by the NHLBI. The Nancy team is supported by the RHU Fight-HF, a public grant overseen by the French National Research Agency (ANR) as part of the second “Investissements d’Avenir” program (reference: ANR-15-RHUS-0004), by the French PIA project “Lorraine Université d’Excellence” (reference: ANR-15-IDEX-04-LUE), the ANR FOCUS-MR (reference: ANR-15-CE14-0032-01), ERA-CVD EXPERT (reference: ANR-16-ECVD-0002-02), and Contrat de Plan Etat Lorraine IT2MP and FEDER Lorraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Rossignol.

Ethics declarations

Conflict of interest

P.R. reports grants and personal fees from AstraZeneca, grants and personal fees from Bayer, grants and personal fees from CVRx, personal fees from Fresenius, grants and personal fees from Novartis, personal fees from Grunenthal, personal fees from Servier, personal fees from Stealth Peptides, personal fees from Vifor Fresenius Medical Care Renal Pharma, personal fees from Idorsia, personal fees from NovoNordisk, personal fees from Ablative Solutions, personal fees from G3P, personal fees from Corvidia, personal fees from Relypsa, outside the submitted work; and Cofounder: CardioRenal, a company developing a telemonitoring loop in heart failure (including potassium measurements). B.P. reports personal fees (consulting) from Bayer, KBP Pharmaceuticals, AstraZeneca, Relypsa/Vifor, Sanofi, sc Pharmaceuticals, Sarfez pharmaceuticals, Stealth Peptides, Cereno Scientific, SQinnovations, G3 pharmaceuticals, Ardelyx and Tricida; stock options from KBP Pharmaceuticals, sc Pharmaceuticals, Sarfez pharmaceuticals, Relypsa, Cereno scientific, SQinnovations, G3 pharmaceuticals, Ardelyx and Tricida; patent for site specific delivery of eplerenone to the myocardium US patent Number 9931412. N.G. reports honoraria from Novartis and Boehringer. All other authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, M., Girerd, N., Duarte, K. et al. Prognostic impact of plasma volume estimated from hemoglobin and hematocrit in heart failure with preserved ejection fraction. Clin Res Cardiol 109, 1392–1401 (2020). https://doi.org/10.1007/s00392-020-01639-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-020-01639-4

Keywords

Navigation