Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temperate rainforests near the South Pole during peak Cretaceous warmth

Abstract

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1,2,3,4,5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf—the southernmost Cretaceous record reported so far—and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82° S during the Turonian–Santonian age (92 to 83 million years ago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120–1,680 parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Setting of MARUM-MeBo70 drill site PS104_20-2 on the ASE shelf.
Fig. 2: Multi-proxy parameter reconstruction of cores 9R and 10R at site PS104_20-2.
Fig. 3: Reconstruction of the West Antarctic Turonian–Santonian temperate rainforest.
Fig. 4: Modern and mid-Cretaceous CO2 sensitivity runs.

Similar content being viewed by others

Data availability

All data are available online via PANGAEA at https://doi.org/10.1594/PANGAEA.906092.

Code availability

The standard model code of the ‘Community Earth System Models’ (COSMOS) version COSMOS-landveg r2413 (2009) is available upon request from the Max Planck Institute for Meteorology (Reinhard.Budich@mpimet.mpg.de). Analytical scripts are available via PANGAEA at https://doi.org/10.1594/PANGAEA.910179).

References

  1. Forster, A., Schouten, S., Baas, M. & Sinninghe Damsté, J. S. Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35, 919–922 (2007).

    ADS  Google Scholar 

  2. Forster, A. et al. Tropical warming and intermittent cooling during the Cenomanian/Turonian Oceanic Anoxic Event (OAE 2): sea surface temperature records from the equatorial Atlantic. Paleoceanography 22, PA1219 (2007).

    ADS  Google Scholar 

  3. Tarduno, J. A. et al. Evidence for extreme climatic warmth from late Cretaceous Arctic vertebrates. Science 282, 2241–2243 (1998).

    ADS  CAS  PubMed  Google Scholar 

  4. O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth Sci. Rev. 172, 224–247 (2017).

    ADS  Google Scholar 

  5. Niezgodzki, I. et al. Late Cretaceous climate simulations with different CO2 levels and subarctic gateway configurations: a model-data comparison. Paleoceanography 32, 980–998 (2017).

    ADS  Google Scholar 

  6. Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. O’Connor, L. K. et al. Late Cretaceous temperature evolution of the southern high latitudes: a TEX86 perspective. Paleoceanogr. Paleoclimatol. 34, 436–454 (2019).

    Google Scholar 

  8. Jenkyns, H. C., Forster, A., Schouten, S. & Sinninghe Damsté, S. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432, 888–892 (2004).

    ADS  CAS  PubMed  Google Scholar 

  9. Ditchfield, P. W., Marshall, J. D. & Pirrie, D. High latitude palaeotemperature variation: new data from the Tithonian to Eocene of James Ross Island, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 79–101 (1994).

    Google Scholar 

  10. Bornemann, A. et al. Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science 319, 189–192 (2008).

    ADS  CAS  PubMed  Google Scholar 

  11. Müller, R. D. et al. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).

    ADS  PubMed  Google Scholar 

  12. Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

    ADS  CAS  PubMed  Google Scholar 

  13. Mcphail, M. K. & Truswell, E. M. Palynology of Site 1166, Prydz Bay, East Antarctica. In Proc. ODP Sci. Res. Vol. 188 (eds Cooper, A. K., O’Brien, P. E. & Richter, C.) 1–43 (Ocean Drilling Program, 2004).

  14. Mays, C., Steinthorsdottir, M. & Stilwell, J. D. Climatic implications of Ginkgoites waarrensis Douglas emend. from the south polar Tupuangi flora, Late Cretaceous (Cenomanian), Chatham Islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438, 308–326 (2015).

    Google Scholar 

  15. Pujana, R. R., Raffi, M. E. & Olivero, E. B. Conifer fossil woods from the Santa Marta Formation (Upper Cretaceous), Brandy Bay, James Ross Island, Antarctica. Cretac. Res. 77, 28–38 (2017).

    Google Scholar 

  16. Manfroi, J. et al. The first report of a Campanian palaeo-wildfire in the West Antarctic Peninsula. Palaeogeogr. Palaeoclimatol. Palaeoecol. 418, 12–18 (2015).

    Google Scholar 

  17. Falcon-Lang, H. J., Cantrill, D. J. & Nichols, G. J. Biodiversity and terrestrial ecology of a mid-Cretaceous, high-latitude floodplain, Alexander Island, Antarctica. J. Geol. Soc. Lond. 158, 709–724 (2001).

    Google Scholar 

  18. Wang, Y. et al. Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth Sci. Rev. 129, 136–147 (2014).

    ADS  CAS  Google Scholar 

  19. Huber, B. T., MacLeod, K. G., Watkins, D. K. & Coffin, M. F. The rise and fall of the Cretaceous Hot Greenhouse climate. Glob. Planet. Change 167, 1–23 (2018).

    ADS  Google Scholar 

  20. Gohl, K. et al. MeBo70 seabed drilling on a polar continental shelf: operational report and lessons from drilling in the Amundsen Sea Embayment of West Antarctica. Geochem. Geophys. Geosyst. 18, 4235–4250 (2017).

    ADS  Google Scholar 

  21. Lowe, A. L. & Anderson, J. B. Reconstruction of the West Antarctic ice sheet in Pine Island Bay during the Last Glacial Maximum and its subsequent retreat history. Quat. Sci. Rev. 21, 1879–1897 (2002).

    ADS  Google Scholar 

  22. Spiegel, C. et al. Tectonomorphic evolution of Marie Byrd Land—implications for Cenozoic rifting activity and onset of West Antarctic glaciation. Glob. Planet. Change 145, 98–115 (2016).

    ADS  Google Scholar 

  23. Larter, R. D. et al. Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 100, 55–86 (2014).

    ADS  Google Scholar 

  24. Gohl, K. et al. Seismic stratigraphic record of the Amundsen Sea Embayment shelf from pre-glacial to recent times: Evidence for a dynamic West Antarctic ice sheet. Mar. Geol. 344, 115–131 (2013).

    ADS  Google Scholar 

  25. Freudenthal, T. & Wefer, G. Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo. Geosci. Instrum. Methods Data Syst. 2, 329–337 (2013).

    ADS  Google Scholar 

  26. Crampton, J. S. et al. in The New Zealand Geological Timescale Monograph 22 (ed. Cooper, R. A.) 103–122 (Institute of Geological and Nuclear Sciences, 2004).

  27. Mays, C. & Stilwell, J. D. Pollen and spore biostratigraphy of the mid-Cretaceous Tupuangi Formation, Chatham Islands, New Zealand. Rev. Palaeobot. Palynol. 192, 79–102 (2013).

    Google Scholar 

  28. Mildenhall, D. C. Palynological Reconnaissance of Early Cretaceous to Holocene Sediments, Chatham Islands, New Zealand Monograph 7 (Institute of Geological & Nuclear Sciences, 1994).

  29. He, T., Lamont, B. B. & Fogliani, B. Pre-Gondwanan-breakup origin of Beauprea (Proteaceae) explains its historical presence in New Caledonia and New Zealand. Sci. Adv. 2, e1501648 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  30. Gee, J. & Kent, D. in Treatise on Geophysics Vol. 5 (ed. Kono, M.) Ch. 5.12 (Elsevier, 2007).

  31. Wobbe, F., Gohl, K., Chambord, A. & Sutherland, R. Structure and breakup history of the rifted margin of West Antarctica in relation to Cretaceous separation from Zealandia and Bellingshausen plate motion. Geochem. Geophys. Geosyst. 13, Q04W12 (2012).

    Google Scholar 

  32. Jordan, T. A., Riley, T. R. & Siddoway, C. S. The geological history and evolution of West Antarctica. Nat. Rev. Earth Environ. 1, 117–133 (2020).

    ADS  Google Scholar 

  33. Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).

    ADS  Google Scholar 

  34. DiVenere, V. J., Kent, D. V. & Dalziel, I. W. D. Mid-Cretaceous paleomagnetic results from Marie Byrd Land, West Antarctica: a test of post-100 Ma relative motion between East and West Antarctica. J. Geophys. Res. 99 (B8), 15115–15139 (1994).

  35. Pocknall, D. T. & Crosbie, Y. M. Pollen morphology of Beauprea (Proteaceae): modern and fossil. Rev. Palaeobot. Palynol. 53, 305–327 (1988).

    Google Scholar 

  36. Jackson, M. B. & Armstrong, W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1, 274–287 (1999).

    CAS  Google Scholar 

  37. Lijmbach, G. W. M. On the origin of petroleum. In Proc. 9th World Petroleum Congress Vol. 2, 357–369 (World Petroleum Congress, 1975).

  38. Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide (Cambridge Univ. Press, 2004).

  39. Meyers, P. A. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org. Geochem. 34, 261–289 (2003).

    CAS  Google Scholar 

  40. Robert, C. & Kennett, J. P. Antarctic subtropical humid episode at the Paleocene–Eocene boundary: clay-mineral evidence. Geology 22, 211–214 (1994).

    ADS  Google Scholar 

  41. Huang, W. H. & Keller, W. D. Dissolution of rock-forming silicate minerals in organic acids: simulated first-stage weathering of fresh mineral surfaces. Am. Mineral. 55, 2076–2094 (1970).

    CAS  Google Scholar 

  42. Sugden, D. E. & Jamieson, S. S. R. The pre-glacial landscape of Antarctica. Scott. Geogr. J. 134, 203–223 (2018).

    Google Scholar 

  43. Uenzelmann-Neben, G. & Gohl, K. Early glaciation already during the Early Miocene in the Amundsen Sea, Southern Pacific: indications from the distribution of sedimentary sequences. Glob. Planet. Change 120, 92–104 (2014).

    ADS  Google Scholar 

  44. Zundel, M. et al. Thurston Island (West Antarctica) between Gondwana subduction and continental separation: A multistage evolution revealed by apatite thermochronology. Tectonics 38, 878–897 (2019).

    ADS  Google Scholar 

  45. Müller, R. D., Gohl, K., Cande, S. C., Goncharov, A. & Golynsky, A. V. Eocene to Miocene geometry of the West Antarctic rift system. Aust. J. Earth Sci. 54, 1033–1045 (2007).

    ADS  Google Scholar 

  46. Harbert, R. S. & Nixon, K. C. Climate reconstruction analysis using coexistence likelihood estimation (CRACLE): a method for the estimation of climate using vegetation. Am. J. Bot. 102, 1277–1289 (2015).

    CAS  PubMed  Google Scholar 

  47. Poole, I., Cantrill, D. J. & Utescher, T. Reconstructing Antarctic palaeoclimate from wood floras: a comparison using multivariate anatomical analysis and the coexistence approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 95–121 (2005).

    Google Scholar 

  48. Francis, J. E. et al. 100 million years of Antarctic climate evolution: evidence from fossil plants. In Proc. 10th Int. Symp. on Antarctic Earth Sciences (eds Cooper, A. K. et al.) 19–27 (National Academies, 2007).

  49. Bauersachs, T., Rochelmeier, J. & Schwark, L. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers. Biogeosciences 12, 3741–3751 (2015).

    ADS  Google Scholar 

  50. Ladant, J. L. & Donnadieu, Y. Paleogeographic regulation of glacial events during the Cretaceous supergreenhouse. Nat. Commun. 7, 12771 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Upchurch, G. R., Jr, Kiehl, J., Shields, C., Scherer, J. & Scotese, C. Latitudinal temperature gradients and high-latitude temperatures during the latest Cretaceous: congruence of geologic data and climate models. Geology 43, 683–686 (2015).

    ADS  Google Scholar 

  52. Farnsworth, A. et al. Climate sensitivity on geological timescales controlled by non-linear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).

    ADS  Google Scholar 

  53. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H. O. et al.) (IPCC, 2019); https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf

  54. Arndt, J. E. et al. A new bathymetric compilation covering circum-Antarctic waters. Geophys. Res. Lett. 40, 3111–3117 (2013).

    ADS  Google Scholar 

  55. Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    ADS  Google Scholar 

  56. Stalling, D., Westerhoff, M. & Hege, H.-C. in The Visualization Handbook (eds Hansen, C. D. & Johnson, C. R.) 749–767 (Elsevier, 2005).

  57. Raine, J. I., Mildenhall, D. C. & Kennedy, E. M. New Zealand Fossil Spores and Pollen: An Illustrated Catalogue 4th edn Science Miscellaneous Series Vol. 4 (GNS, 2011); http://data.gns.cri.nz/sporepollen/index.htm

  58. Mays, C. A late Cretaceous (Cenomanian-Turonian) south polar palynoflora from the Chatham Islands, New Zealand. Mem. Assoc. Aust. Palaeontol. 47, 92 (2015).

    Google Scholar 

  59. Bowman, V. C., Francis, J. E., Askin, R. A., Riding, J. B. & Swindles, G. T. Latest Cretaceous-earliest Paleogene vegetation and climate change at the high southern latitudes: palynological evidence from Seymour Island, Antarctic Peninsula. Palaeogeogr. Palaeoclimatol. Palaeoecol. 408, 26–47 (2014).

    Google Scholar 

  60. Utescher, T. et al. The coexistence approach—theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 58–73 (2014).

    Google Scholar 

  61. Ballantyne, A. P. et al. Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies. Geology 38, 603–606 (2010).

    ADS  CAS  Google Scholar 

  62. Uhl, D., Mosbrugger, V., Bruch, A. & Utescher, T. Reconstructing palaeotemperatures using leaf floras-case studies for a comparison of leaf margin analysis and the coexistence approach. Rev. Palaeobot. Palynol. 126, 49–64 (2003).

    Google Scholar 

  63. Pound, M. J. & Salzmann, U. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition. Sci. Rep. 7, 43386 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pross, J. et al. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488, 73–77 (2012).

    CAS  PubMed  Google Scholar 

  65. Willard, D. A. et al. Arctic vegetation, temperature, and hydrology during Early Eocene transient global warming events. Glob. Planet. Change 178, 139–152 (2019).

    ADS  Google Scholar 

  66. Kennedy, E. M. Late Cretaceous and Paleocene terrestrial climates of New Zealand: leaf fossil evidence from South Island assemblages. N. Z. J. Geol. Geophys. 46, 295–306 (2003).

    Google Scholar 

  67. Kennedy, E. M. et al. Deriving temperature estimates from southern hemisphere leaves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 80–90 (2014).

    Google Scholar 

  68. Grimm, G. W., Bouchal, J. M., Denk, T. & Potts, A. Fables and foibles: a critical analysis of the Palaeoflora database and the coexistence approach for palaeoclimate reconstruction. Rev. Palaeobot. Palynol. 233, 216–235 (2016).

    Google Scholar 

  69. Hollis, C. J. et al. The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geosci. Model Dev. 12, 3149–3206 (2019).

    ADS  CAS  Google Scholar 

  70. Kühl, N., Gebhardt, C., Litt, T. & Hense, A. Probability density functions as botanical-climatological transfer functions for climate reconstruction. Quat. Res. 58, 381–392 (2002).

    Google Scholar 

  71. Greenwood, D. R., Keefe, R. L., Reichgelt, T. & Webb, J. A. Eocene paleobotanical altimetry of Victoria’s Eastern Uplands. Aust. J. Earth Sci. 64, 625–637 (2017).

    ADS  CAS  Google Scholar 

  72. What is GBIF? (GBIF, 2019); https://www.gbif.org/what-is-gbif

  73. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  74. Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling R package version 1. 1-4 (2017); http://cran.r-project.org/web/packages/dismo/index.html

    Google Scholar 

  75. Reichgelt, T., West, C. K. & Greenwood, D. R. The relation between global palm distribution and climate. Sci. Rep. 8, 4721 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  76. Bourbonniere, R. A. & Meyers, P. A. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr. 41, 352–359 (1996).

    ADS  Google Scholar 

  77. Rütters, H., Sass, H., Cypionka, H. & Rullkötter, J. Phospholipid analysis as a toll to study complex microbial communities in marine sediments. J. Microbiol. Methods 48, 149–160 (2002).

    PubMed  Google Scholar 

  78. Bauersachs, T., Talbot, H. M., Sidgwick, F., Sivonen, K. & Schwark, L. Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in the Baltic Sea. PLoS ONE 12, (2017).

  79. Bauersachs, T. et al. Rapid analysis of long-chain glycolipids in heterocystous cyanobacteria using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23, 1387–1394 (2009).

    ADS  CAS  PubMed  Google Scholar 

  80. Bauersachs, T. et al. Distribution of long chain heterocyst glycolipids in cultures of the thermophilic cyanobacterium Mastigocladus laminosus and a hot spring microbial mat. Org. Geochem. 56, 19–24 (2013).

    CAS  Google Scholar 

  81. Wörmer, L. et al. Cyanobacterial heterocyst glycolipids in cultures and environmental samples: diversity and biomarker potential. Limnol. Oceanogr. 57, 1775–1788 (2012).

    ADS  Google Scholar 

  82. Schouten, S. et al. Endosymbiotic heterocystous cyanobacteria synthesize different heterocyst glycolipids than free-living heterocyst cyanobacteria. Phytochemistry 85, 115–121 (2013).

    MathSciNet  CAS  PubMed  Google Scholar 

  83. Bale, N. J. et al. A novel heterocyst glycolipid detected in a pelagic N2-fixing cyanobacterium of the genus Calothrix. Org. Geochem. 123, 44–47 (2018).

    CAS  Google Scholar 

  84. Bauersachs, T. et al. Heterocyte glycolipids indicate polyphyly of stigonematalean cyanobacteria. Phytochemistry 166, (2019).

  85. Ehrmann, W. et al. Provenance changes between recent and glacial-time sediments in the Amundsen Sea Embayment, West Antarctica: clay mineral assemblage evidence. Antarct. Sci. 23, 471–486 (2011).

    ADS  Google Scholar 

  86. Petschick, R., Kuhn, G. & Gingele, F. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar. Geol. 130, 203–229 (1996).

    ADS  CAS  Google Scholar 

  87. Kirschvink, J. L. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. Int. 62, 699–718 (1980).

    ADS  Google Scholar 

  88. Roeckner, E. et al. (eds) PART I: Model Description Report No. 349 (Max-Planck-Institut für Meteorologie, 2003); http://www.mpimet.mpg.de/fileadmin/models/echam/mpi_report_349.pdf

  89. Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M. & Roske, F. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model. 5, 91–127 (2003).

    ADS  Google Scholar 

  90. Hagemann, S. & Dumenil, L. A parametrization of the lateral waterflow for the global scale. Clim. Dynam. 14, 17–31 (1997).

    ADS  Google Scholar 

  91. Hibler, W. D., III. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815–846 (1979).

    ADS  Google Scholar 

  92. Markwick, P. J. & Valdes, P. J. Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example. Palaeogeogr. Palaeoclimatol. Palaeoecol. 213, 37–63 (2004).

    Google Scholar 

  93. Sewall, J. O. et al. Climate model boundary conditions for four Cretaceous time slices. Clim. Past 3, 647–657 (2007).

    Google Scholar 

  94. Niezgodzki, I., Tyszka, J., Knorr, G. & Lohmann, G. Was the Arctic Ocean ice free during the latest Cretaceous? The role of CO2 and gateway configurations. Glob. Planet. Change 177, 201–212 (2019).

    ADS  Google Scholar 

  95. Wei, W. & Lohmann, G. Simulated Atlantic Multidecadal Oscillation during the Holocene. J. Clim. 25, 6989–7002 (2012).

    ADS  Google Scholar 

  96. Zhang, X., Lohmann, G., Knorr, G. & Purcell, C. Abrupt glacial climate shifts controlled by ice sheet changes. Nature 512, 290–294 (2014).

    ADS  CAS  PubMed  Google Scholar 

  97. Stepanek, C. & Lohmann, G. Modelling mid-Pliocene climate with COSMOS. Geosci. Model Dev. 5, 1221–1243 (2012).

    ADS  Google Scholar 

  98. Knorr, G. & Lohmann, G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nat. Geosci. 7, 376–381 (2014).

    ADS  CAS  Google Scholar 

  99. Stein, R. et al. Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nat. Commun. 7, 11148 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Walliser, E. O., Lohmann, G., Niezgodzki, I., Tütken, T. & Schöne, B. R. Response of Central European SST to atmospheric pCO2 forcing during the Oligocene—a combined proxy data and numerical climate model approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 552–569 (2016).

    Google Scholar 

  101. Vahlenkamp, M. et al. Astronomically paced changes in deep-water circulation in the Western North Atlantic during the Middle Eocene. Earth Planet. Sci. Lett. 484, 329–340 (2018).

    ADS  CAS  Google Scholar 

  102. Gierz, P., Lohmann, G. & Wei, W. Response of Atlantic Overturning to future warming in a coupled atmosphere–ocean-ice sheet model. Geophys. Res. Lett. 42, 6811–6818 (2015).

    ADS  Google Scholar 

  103. Simões Pereira, P. et al. Geochemical fingerprints of glacially eroded bedrock from West Antarctica: detrital thermochronology, radiogenic isotope systematics and trace element geochemistry in Late Holocene glacial-marine sediments. Earth Sci. Rev. 182, 204–232 (2018).

    ADS  Google Scholar 

  104. Stacey, J. S. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975).

    ADS  CAS  Google Scholar 

  105. Chew, D. M., Sylvester, P. J. & Tubrett, M. N. U–Pb and Th–Pb dating of apatite by LA-ICPMS. Chem. Geol. 280, 200–216 (2011).

    ADS  CAS  Google Scholar 

  106. O’Sullivan, G. J., Chew, D. M., Morton, A. C., Mark, C. & Henrichs, I. A. An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis. Geochem. Geophys. Geosyst. 19, 1309–1326 (2018).

    ADS  Google Scholar 

  107. Flowerdew, M. J. et al. Distinguishing East and West Antarctic sediment sources using the Pb isotope composition of detrital K-feldspar. Chem. Geol. 292–293, 88–102 (2012).

    ADS  Google Scholar 

  108. Petrus, J. A. & Kamber, B. S. VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanal. Res. 36, 247–270 (2012).

    CAS  Google Scholar 

  109. Chew, D. M., Petrus, J. A. & Kamber, B. S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 363, 185–199 (2014).

    ADS  CAS  Google Scholar 

  110. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atom. Spectrom. 26, 2508–2518 (2011).

    CAS  Google Scholar 

  111. Ludwig, K. R. User’s Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel Special Publication No. 4 (Berkeley Geochronology Center, 2012).

  112. Nasdala, L. et al. GZ7 and GZ8—two zircon reference materials for SIMS U-Pb geochronology. Geostand. Geoanal. Res. 42, 431–457 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. McDowell, F. W., McIntosh, W. C. & Farley, K. A. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem. Geol. 214, 249–263 (2005).

    ADS  CAS  Google Scholar 

  114. Schoene, B. & Bowring, S. A. U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib. Mineral. Petrol. 151, 615 (2006).

    ADS  CAS  Google Scholar 

  115. Mark, C., Cogné, N. & Chew, D. Tracking exhumation and drainage divide migration of the western Alps: a test of the apatite U-Pb thermochronometer as a detrital provenance tool. Geol. Soc. Am. Bull. 128, 1439–1460 (2016).

    ADS  Google Scholar 

  116. Mao, M., Rukhlov, A. S., Rowins, S. M., Spence, J. & Coogan, L. A. Apatite trace element compositions: a robust new tool for mineral exploration. Econ. Geol. 111, 1187–1222 (2016).

    Google Scholar 

  117. Woodhead, J. D., Hellstrom, J., Hergt, J. M., Greig, A. & Maas, R. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 31, 331–343 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the captain and crew of RV Polarstern Expedition PS104, as well as the MARUM-MeBo70 team for their support; S. Wiebe, R. Fröhlking-Teichert, V. Schumacher, N. Lensch, M. Arevalo, M. Seebeck and H. Grobe for their help on board and in the lab, respectively; the Klinikum Bremen-Mitte (A.-J. Lemke and C. Tiemann, Gesundheit Nord Bremen) for providing facilities for computed core tomographies and M. Köhler (MKfactory, Stahnsdorf, Germany) for preparing the thin sections; and J. McKay (University of Leeds, UK) for creating and painting the Late Cretaceous West Antarctic palaeoenvironment based on reconstructions presented here. The operation of MARUM-MeBo70 was funded by the Alfred Wegener Institute (AWI) through its Research Program PACES II Topic 3 and grant no. AWI_PS104_001, the MARUM Center for Marine Environmental Sciences, the British Antarctic Survey through its Polar Science for Planet Earth programme and the Natural Environmental Research Council-funded UK IODP programme. J.P.K, G.K., K.G., J.M. G.U.-N., O.E., C.G., T.R. and R.D. were funded by the AWI PACES II programme. J.P.K. and J.M. were also funded through the Helmholtz Association (PD-201 and VH-NG-1101). UK IODP funded the participation of T.v.d.F., P.S.P. and S.M.B. in expedition PS104. J.T. was funded through the Cluster of Excellence “The Ocean Floor – Earth’s Uncharted Interface” at the University of Bremen. Y.N. was funded by Lancaster University, UK.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.P.K. led the study and together with U.S., T. Bickert, C.-D.H., K.G. and G.K., conceived the idea for the study and wrote the manuscript. J.P.K, T. Bickert, C.-D.H., S.M.B., J.A.S., K.G., T. Freudenthal, T.v.d.F., P.S.P., W.E., O.E., H.P. and T.R. collected the cores. J.P.K, C.-D.H., T. Bickert and G.K. undertook the sedimentological and U.S. and S.M.B. the palynological analyses. T. Bickert and G.K. conducted the XRF scanning and processing of the cores. G.K. carried out the grain-size and bulk mineralogical analyses. J.T. led the CT scanning, processing and visualization. J.M. performed the biomarker analyses (apolar hydrocarbons) together with T. Bauersachs (HG palaeothermometry). T. Frederichs conducted the palaeomagnetic measurements. J.E.F., G.N., G.K. and J.P.K. investigated the thin sections. W.E. analysed the clay mineral assemblages and T.v.d.F. and P.S.P. measured bulk sediment Nd and Sr isotope compositions. K.G., R.D.L. and T. Frederichs helped determine the palaeolatitude of the drill site. G.L. and I.N. undertook the modelling with COSMOS. M.Z., C.S., C.M. and D.C. provided the U–Pb age constraints. U.S. and F.S. performed the bioclimatic analyses. J.P.K., T.B., C.-D.H., S.M.B., T. Frederichs, W.E., J.A.S., O.E.,, H.P., T.R. and R.D. helped with sampling and scanning the cores. K.G., G.U.-N. and R.D.L. undertook the seismic pre-site survey. All members of the Expedition PS104 Science Team helped with pre-site survey investigations, core recovery, onboard analyses and/or shore-based measurements. K.G., G.K., C.-D.H., G.U.-N., T. Bickert and R.D.L. acquired funding and proposed and planned RV Polarstern expedition PS104. All co-authors commented on the manuscript and provided input to its final version.

Corresponding author

Correspondence to Johann P. Klages.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Dietmar Muller, Anne-Marie Tosolini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Tera–Wasserburg and PCA plots for U–Pb ages (in ±Ma).

a, Tera–Wasserburg diagram showing apatite (red; 9.9 mbsf) and zircon (blue; 26.7 mbsf) U–Pb data. The red bar at the upper array intercept for Eocene apatite is the range of crystalline basement 207Pbc/206Pbc values reported by (ref. 104) for West Antarctica, which anchor the apatite age calculation. b, PCA plot showing trace-element data and single-grain ages (in Myr) for AWI-35 (9.9 mbsf) apatite, and lithological fields derived from a bedrock apatite reference library104. Eocene grains (labelled in red) are chemically and chronologically distinct from other detrital apatite in the same sample. Data point error ellipses are 2σ.

Extended Data Fig. 2 Pollen abundance diagram.

Percentages of the most abundant pollen and spores and their total counts in cores 9R and 10R at site PS104_20-2 are shown.

Extended Data Fig. 3 Photomicrographs of selected pollen and spores.

a, Cyathidites australis. b, Osmundacidites wellmanii. c, Ruffordiaspora australiensis. d, Ruffordiaspora ludbrookiae. e, Cycadopites follicularis. f, Microcachryidites antarcticus. g, Phyllocladidites mawsonii. h, Podocarpidites major. i, Trichotomosulcites hemisphaerius. j, Trichotomosulcites subgranulatus. k, Taxodiaceaepollenites hiatus. l, Equisetosporites sp. m, Nyssapollenites chathamicus. n, Peninsulapollis gillii. o, Proteacidites subpalisadus. Scale bars, 10 μm.

Extended Data Fig. 4 HG palaeothermometry.

Presence of HGs at 27.03–27.04 mbsf at site PS104_20-2 (core 9R) and river or lake surface water temperature (SWT) estimates from the HG-based molecular palaeothermometer (HTI30).

Extended Data Fig. 5 Example microscopic images from thin sections.

The sections are taken from a fossil root fragment between 29.34 and 29.43 mbsf in core 10R at site PS104_20-2. a, Overview scan of root fragment with indicated locations of detailed microscopic images be. White arrows indicate the locations of preserved parenchyma storage cells, including potential aerenchyma gas exchange cells (d). The scale bar in d applies to be.

Extended Data Fig. 6 Biomarker presence.

a, Pristane/n-C17 versus phytane/n-C18 to infer organic matter type during sediment deposition (after refs. 37,38). b, CPI (left) and pristane/phytane (Pr/Ph; right) ratios. The CPI points to a low maturity and land plant origin of the organic matter (CPI > 1) deposited in an aquatic environment (Pr/Ph < 2) and a peat swamp environment (Pr/Ph > 2), respectively.

Extended Data Table 1 Percentages of the most abundant pollen and spore taxa
Extended Data Table 2 Key pollen taxa and the NLRs used to derive quantitative climate estimates
Extended Data Table 3 Full list of identified pollen and spore taxa

Supplementary information

Video 1

3D animation video of the sediment record. Animated video from X-ray computed tomography (CT) data of cores PS104_20-2 9R and 10R.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klages, J.P., Salzmann, U., Bickert, T. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020). https://doi.org/10.1038/s41586-020-2148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2148-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing