Skip to main content
Log in

Estimated plasma volume and mortality: analysis from NHANES 1999–2014

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

While estimated plasma volume (ePV) has been studied in some diseases, such as heart failure, the relationship between ePV and all-cause or cause-specific mortality remains unexplored. Therefore, we investigated the association between ePV and all-cause, cardiovascular (CV), and cancer-related mortality among adults in the US.

Method

We used the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2014 and included participants older than 18 years. Mortality data were obtained from the National Death Index and matched to the NHANES participants. ePV was derived using Strauss formula. Cox proportional hazard models were fit to estimate hazard ratios for all-cause and cause-specific mortality without and with adjustment for potential confounders.

Results

Of the 42,705 participants, 5194 died (1121 CV deaths) during mean follow-up of 8.0 (range 0–16.7) years. Mean ± SD age and ePV of the participants were 47.2 ± 19.4 years and 4.2 ± 0.84, respectively. In unadjusted models, 1 unit increase in ePV was associated with 29%, 32%, and 16% increased risk in all-cause (HR 1.29; 95% CI 1.24, 1.35), CV (HR 1.32; 95% CI 1.22, 1.43), and cancer-related (HR 1.16; 95% CI 1.05, 1.27) mortality. Risk remained high in adjusted models (all-cause HR 1.24; 95% CI 1.18, 1.30; CV HR 1.22; 95% CI 1.11, 1.34; cancer-specific HR 1.24; 95% CI 1.10, 1.39). When comparing the highest and lowest ePV quartiles, similar results were noted (adjusted all-cause HR 1.64; 95% CI 1.45, 1.86; CV HR 1.52; 95% CI 1.19, 1.93; cancer HR 1.85; 95% CI 1.38, 2.49).

Conclusion

An increase in ePV was associated with increased all-cause and cause-specific mortality. Further studies are needed to explore the mechanism of this relationship and translation into a better outcome.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dupont M, Mullens W, Tang WHW (2011) Impact of systemic venous congestion in heart failure. Curr Heart Fail Rep. 8(4):233–241. https://doi.org/10.1007/s11897-011-0071-7

    Article  PubMed  Google Scholar 

  2. Drazner MH, Rame JE, Stevenson LW, Dries DL (2001) Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med 345(8):574–581

    Article  CAS  Google Scholar 

  3. Damman K, Voors AA, Hillege HL et al (2010) Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur J Heart Fail 12(9):974–982. https://doi.org/10.1093/eurjhf/hfq118

    Article  PubMed  Google Scholar 

  4. Ling HZ, Flint J, Damgaard M et al (2014) Calculated plasma volume status and prognosis in chronic heart failure. Eur J Heart Fail 17(1):35–43. https://doi.org/10.1002/ejhf.193

    Article  CAS  PubMed  Google Scholar 

  5. Balderston JR, Shah KB, Paciulli SC, Gertz ZM (2018) Usefulness of estimated plasma volume at postdischarge follow-up to predict recurrent events in patients with heart failure. Am J Cardiol 122(7):1191–1194. https://doi.org/10.1016/j.amjcard.2018.06.057

    Article  PubMed  Google Scholar 

  6. Duarte K, Monnez JM, Albuisson E, Pitt B, Zannad F, Rossignol P (2015) Prognostic value of estimated plasma volume in heart failure. JACC Heart Fail. 3(11):886–893. https://doi.org/10.1016/j.jchf.2015.06.014

    Article  PubMed  Google Scholar 

  7. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 348(14):1309–1321

    Article  CAS  Google Scholar 

  8. Tarazi RC, Frohlich ED, Dustan HP (1968) Plasma volume in men with essential hypertension. N Engl J Med 278(14):762–765. https://doi.org/10.1056/nejm196804042781404

    Article  CAS  PubMed  Google Scholar 

  9. Tarazi RC (1970) Plasma volume and chronic hypertension. Arch Intern Med 125(5):835. https://doi.org/10.1001/archinte.1970.00310050073008

    Article  CAS  PubMed  Google Scholar 

  10. Yoshihisa A, Abe S, Sato Y et al (2017) Plasma volume status predicts prognosis in patients with acute heart failure syndromes. Eur Heart J Acute Cardiovasc Care. 7(4):330–338. https://doi.org/10.1177/2048872617690889

    Article  PubMed  Google Scholar 

  11. Hudson SR, Chan D, Ng LL (2016) Change in plasma volume and prognosis in acute decompensated heart failure: an observational cohort study. J R Soc Med 109(9):337–346. https://doi.org/10.1177/0141076816661316

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chouihed T, Rossignol P, Bassand A et al (2018) Diagnostic and prognostic value of plasma volume status at emergency department admission in dyspneic patients: results from the PARADISE cohort. Clin Res Cardiol 108(5):563–573. https://doi.org/10.1007/s00392-018-1388-y

    Article  CAS  PubMed  Google Scholar 

  13. Inzucchi SE, Zinman B, Fitchett D et al (2017) How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41(2):356–363. https://doi.org/10.2337/dc17-1096

    Article  CAS  PubMed  Google Scholar 

  14. Zinman B, Wanner C, Lachin J, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen O, Woerle H, Broedl U, Inzucchi S (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128

    Article  CAS  Google Scholar 

  15. NHANES-National Health and Nutrition Examination Survey Homepage. Centers for disease control and prevention. https://www.cdc.gov/nchs/nhanes/index.htm. Accessed 6 June 2019.

  16. US Department of Health and Human Services; US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th ed. Washington, DC: US Dept of Health and Human Services; December 2015. https://www.health.gov/DietaryGuidelines. Accessed 25 Dec 2019.

  17. Strauss MB, Davis RK, Rosenbaum JD, Rossmeisl EC (1951) “Water diuresis” produced during recumbency by the intravenous infusion of isotonic saline solution 1. J Clin Investig. 30(8):862–868. https://doi.org/10.1172/jci102501

    Article  CAS  PubMed  Google Scholar 

  18. Kalra PR, Anagnostopoulos C, Bolger AP, Coats AJ, Anker SD (2002) The regulation and measurement of plasma volume in heart failure. J Am Coll Cardiol. 39(12):1901–1908. https://doi.org/10.1016/s0735-1097(02)01903-4

    Article  PubMed  Google Scholar 

  19. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol. 37(2):247–248. https://doi.org/10.1152/jappl.1974.37.2.247

    Article  CAS  PubMed  Google Scholar 

  20. Kaplan AA. A simple and accurate method for prescribing plasma exchange. ASAIO transactions. https://www.ncbi.nlm.nih.gov/pubmed/?term=2252761. Accessed 6 June 2019.

  21. Davis JO, Freeman RH (1976) Mechanisms regulating renin release. Physiol Rev 56(1):1–56. https://doi.org/10.1152/physrev.1976.56.1.1

    Article  CAS  PubMed  Google Scholar 

  22. Schrier RW, Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341(8):577–585. https://doi.org/10.1056/nejm199908193410806

    Article  CAS  PubMed  Google Scholar 

  23. Trial E (2005) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness. JAMA 294(13):1625. https://doi.org/10.1001/jama.294.13.1625

    Article  Google Scholar 

  24. International Committee for Standardization in Haematology (1980) Recommended method for radioisotope red-cell survival studies. Br J Haematol 45(4):659–666. https://doi.org/10.1111/j.1365-2141.1980.tb07189.x

    Article  Google Scholar 

  25. O'Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, De Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 61(4):485–510

    Article  Google Scholar 

  26. McMurray J, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez Sanchez MA, Jaarsma T (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Revista Española de Cardiología. 65(10):938

    Article  Google Scholar 

  27. Ismail N (1998) The medical and economical advantages of early referral of chronic renal failure patients to renal specialists. Nephrol Dial Transpl 13(2):246–250. https://doi.org/10.1093/ndt/13.2.246

    Article  CAS  Google Scholar 

  28. Mohamed BA, Schnelle M, Khadjeh S et al (2015) Molecular and structural transition mechanisms in long-term volume overload. Eur J Heart Fail 18(4):362–371. https://doi.org/10.1002/ejhf.465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tycho JL, Boer WH, Bos WJ, Blankestijn PJ, Koomans HA. Contribution of volume overload and angiotensin II to the increased pulse wave velocity of hemodialysis patients. Journal of the American Society of Nephrology : JASN. https://www.ncbi.nlm.nih.gov/pubmed/?term=11752035. Accessed 6 June 2019.

  30. Barenbrock M, Spieker C, Laske V et al (1994) Studies of the vessel wall properties in hemodialysis patients. Kidney Int 45(5):1397–1400. https://doi.org/10.1038/ki.1994.182

    Article  CAS  PubMed  Google Scholar 

  31. Bañez LL, Hamilton RJ, Partin AW et al (2007) Obesity-related plasma hemodilution and PSA concentration among men with prostate cancer. JAMA 298(19):2275. https://doi.org/10.1001/jama.298.19.2275

    Article  PubMed  Google Scholar 

  32. Kristal AR, Chi C, Tangen CM, Goodman PJ, Etzioni R, Thompson IM (2006) Associations of demographic and lifestyle characteristics with prostate-specific antigen (PSA) concentration and rate of PSA increase. Cancer 106(2):320–328. https://doi.org/10.1002/cncr.21603

    Article  PubMed  Google Scholar 

  33. Baillargeon J, Pollock BH, Kristal AR et al (2005) The association of body mass index and prostate-specific antigen in a population-based study. Cancer 103(5):1092–1095. https://doi.org/10.1002/cncr.20856

    Article  PubMed  Google Scholar 

  34. Chang IH, Ahn SH, Han JH, Kim T-H, Kim YS, Myung SC (2009) The clinical significance in healthy men of the association between obesity related plasma hemodilution and tumor marker concentration. J Urol 181(2):567–573. https://doi.org/10.1016/j.juro.2008.10.030

    Article  PubMed  Google Scholar 

  35. Convertino V (2007) Blood volume response to physical activity and inactivity. Am J Med Sci. 334(1):72–79. https://doi.org/10.1097/maj.0b013e318063c6e4

    Article  PubMed  Google Scholar 

  36. Sellami M, Chamari K, Zagatto A, Kebsi W, Chaouachi A, Zouhal H (2017) Racial differences in hemoglobin and plasma volume variation: implications for muscle performance and recovery. Ethn Health. 24(2):182–193. https://doi.org/10.1080/13557858.2017.1315375

    Article  PubMed  Google Scholar 

  37. Buffaloe G, Heineken F (1983) Plasma volume nomograms for use in therapeutic plasma exchange. Transfusion. 23(4):355–357. https://doi.org/10.1046/j.1537-2995.1983.23483276879.x

    Article  CAS  PubMed  Google Scholar 

  38. Sprenger KBG, Huber K, Kratz W, Henze E (1987) Nomograms for the prediction of patients plasma volume in plasma exchange therapy from height, weight, and hematocrit. J Clin Apheresis 3(3):185–190. https://doi.org/10.1002/jca.2920030313

    Article  CAS  PubMed  Google Scholar 

  39. Marenzi G, Lauri G, Grazi M, Assanelli E, Campodonico J, Agostoni P (2001) Circulatory response to fluid overload removal by extracorporeal ultrafiltration in refractory congestive heart failure. J Am Coll Cardiol 38(4):963–968. https://doi.org/10.1016/s0735-1097(01)01479-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There was no specific grant for this research from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AM and RQ had access to the data. Both authors contributed to the conception, design of the work, acquisition, and analysis of data and interpretation of data for the work. AM drafted the manuscript. RQ critically revised the manuscript. All gave the final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.

Corresponding author

Correspondence to Amr Marawan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marawan, A., Qayyum, R. Estimated plasma volume and mortality: analysis from NHANES 1999–2014. Clin Res Cardiol 109, 1148–1154 (2020). https://doi.org/10.1007/s00392-020-01606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-020-01606-z

Keywords

Navigation