Effects of sympatho-vagal interaction on ventricular electrophysiology and their modulation during beta-blockade

J Mol Cell Cardiol. 2020 Feb:139:201-212. doi: 10.1016/j.yjmcc.2020.01.011. Epub 2020 Jan 29.

Abstract

Aims: The effects of sympatho-vagal interaction on heart rate (HR) changes are characterized by vagal dominance resulting in accentuated antagonism. Complex autonomic modulation of ventricular electrophysiology may exert prognostic arrhythmic impact. We examined the effects of concurrent sympathetic (SNS) and vagus (VNS) nerve stimulation on ventricular fibrillation threshold (VFT) and standard restitution (RT) in an isolated rabbit heart preparation with intact dual autonomic innervation, with and without beta-blockade.

Methods and results: Monophasic action potentials were recorded from left ventricular epicardial surface of dual-innervated isolated heart preparations from New Zealand white rabbits (n = 18). HR, VFT and RT were measured during different stimulation protocols (Protocol 1: VNS-SNS; Protocol 2: SNS-VNS) involving low- and high-frequency stimulations. A sub-study of Protocol 2 was performed in the presence of metoprolol tartrate. In both protocols, HR changes were characterized by vagal-dominant bradycardic component, affirming accentuated antagonism. During concurrent high-frequency VNS (HV), SNS prevails in lowering VFT in a frequency-sensitive manner during low (LS) or high (HS)-frequency stimulations (HV-LS: -2.8 ± 0.8 mA; HV-HS: -4.0 ± 0.9 mA, p < .05 vs. HV), with accompanying steepening of relative RT slope gradients (HV-LS: 223.54 ± 37.41%; HV-HS: 295.20 ± 60.86%, p < .05 vs. HV). In protocol 2, low (LV) and high (HV) vagal stimulations during concurrent HS raised VFT (HS-LV: 1.0 ± 0.4 mA; HS-HV: 3.0 ± 0.6 mA, p < .05 vs HS) with associated flattening of RT slopes (HS-LV: 32.40 ± 4.97%;HS-HV: 38.07 ± 6.37%; p < .05 vs HS). Metoprolol abolished accentuated antagonism in HR changes, reduced VFT and flattened RT globally during SNS-VNS.

Conclusions: Accentuated antagonism is absent in ventricular electrophysiological changes during sympatho-vagal interaction with sympathetic effect prevailing, suggesting a different mechanism at the ventricular level from heart rate effects. Metoprolol nullified accentuated antagonism with additional anti-fibrillatory effect beyond adrenergic blockade during sympatho-vagal stimulations.

Keywords: Autonomic stimulation; Beta-blockade; Restitution; Ventricular fibrillation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenergic beta-Antagonists / pharmacology*
  • Animals
  • Electrophysiological Phenomena* / drug effects
  • Heart Rate / drug effects
  • Heart Ventricles / drug effects
  • Heart Ventricles / physiopathology*
  • Male
  • Metoprolol
  • Perfusion
  • Rabbits
  • Sympathetic Nervous System / drug effects
  • Sympathetic Nervous System / physiopathology*
  • Vagus Nerve / drug effects
  • Vagus Nerve / physiopathology*
  • Vagus Nerve Stimulation

Substances

  • Adrenergic beta-Antagonists
  • Metoprolol