Skip to main content

Advertisement

Log in

Time-updated resting heart rate predicts mortality in patients with COPD

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

High resting heart rate (RHR) is associated with higher mortality in the general population and in cardiovascular disease. Less is known about the association of RHR with outcome in chronic obstructive pulmonary disease (COPD). In particular, the time-updated RHR (most recent value before the event) appears informative. This is the first study to investigate the association of time-updated RHR with mortality in COPD. We compared the baseline and time-updated RHR related to survival in 2218 COPD patients of the German COSYCONET cohort (COPD and Systemic Consequences—Comorbidities Network). Patients with a baseline RHR > 72 beats per minute (bmp) had a significantly (p = 0.049) higher all-cause mortality risk (adjusted hazard ratio (HR) of 1.37 (1.00–1.87) compared to baseline RHR ≤ 72 bpm. The time-updated RHR > 72 bpm was markedly superior (HR 1.79, 1.30–2.46, p = 0.001). Both, increased baseline and time-updated RHR, were independently associated with low FEV1, low TLCO, a history of diabetes, and medication with short-acting beta agonists (SABAs). In conclusion, increased time-updated RHR is associated with higher mortality in COPD independent of other predictors and superior to baseline RHR. Increased RHR is linked to lung function, comorbidities and medication. Whether RHR is an effective treatment target in COPD, needs to be proven in controlled trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agusti AG (2005) Systemic effects of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2(4):367–370

    Article  PubMed  Google Scholar 

  2. Chen W, Thomas J, Sadatsafavi M, FitzGerald JM (2015) Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Lancet Respir Med 3(8):631–639. https://doi.org/10.1016/S2213-2600(15)00241-6

    Article  PubMed  Google Scholar 

  3. Mannino DM, Thorn D, Swensen A, Holguin F (2008) Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD. Eur Respir J 32(4):962–969. https://doi.org/10.1183/09031936.00012408

    Article  CAS  PubMed  Google Scholar 

  4. Cuthbert JJ, Kearsley JW, Kazmi S, Kallvikbakka-Bennett A, Weston J, Davis J, Rimmer S, Clark AL (2019) The impact of heart failure and chronic obstructive pulmonary disease on mortality in patients presenting with breathlessness. Clin Res Cardiol 108(2):185–193. https://doi.org/10.1007/s00392-018-1342-z

    Article  CAS  PubMed  Google Scholar 

  5. Ukena C, Mahfoud F, Kindermann M, Kindermann I, Bals R, Voors AA, van Veldhuisen DJ, Böhm M (2010) The cardiopulmonary continuum systemic inflammation as ‘common soil’ of heart and lung disease. Int J Cardiol 145(2):172–176. https://doi.org/10.1016/j.ijcard.2010.04.082

    Article  PubMed  Google Scholar 

  6. Divo M, Cote C, de Torres JP, Casanova C, Marin JM, Pinto-Plata V, Zulueta J, Cabrera C, Zagaceta J, Hunninghake G, Celli B (2012) Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 186(2):155–161

    Article  PubMed  Google Scholar 

  7. Tockman MS, Pearson JAYD, Fleg JL, Metter EJ, Kao SY, Pal KGRAM, Cruise LJ, Fozard JL (1995) Rapid decline in FEV 1 a new risk factor for coronary heart disease mortality. Am J Respir Crit Care Med 151:390–398

    Article  CAS  PubMed  Google Scholar 

  8. Sin DD, Anthonisen NR, Soriano JB, Agusti AG (2006) Mortality in COPD: role of comorbidities. Eur Respir J 28(6):1245–1257. https://doi.org/10.1183/09031936.00133805

    Article  CAS  PubMed  Google Scholar 

  9. Lonn EM, Rambihar S, Gao P, Custodis FF, Sliwa K, Teo KK, Yusuf S, Böhm M (2014) Heart rate is associated with increased risk of major cardiovascular events, cardiovascular and all-cause death in patients with stable chronic cardiovascular disease: an analysis of ONTARGET/TRANSCEND. Clin Res Cardiol 103(2):149–159. https://doi.org/10.1007/s00392-013-0644-4

    Article  PubMed  Google Scholar 

  10. Munzel T, Hahad O, Gori T, Hollmann S, Arnold N, Prochaska JH, Schulz A, Beutel M, Pfeiffer N, Schmidtmann I, Lackner KJ, Keaney JF Jr, Wild PS (2019) Heart rate, mortality, and the relation with clinical and subclinical cardiovascular diseases: results from the Gutenberg Health Study. Clin Res Cardiol. https://doi.org/10.1007/s00392-019-01466-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chin KL, Collier T, Pocock S, Pitt B, McMurray JJV, van Veldhuisen DJ, Swedberg K, Vincent J, Zannad F, Liew D (2019) Impact of eplerenone on major cardiovascular outcomes in patients with systolic heart failure according to baseline heart rate. Clin Res Cardiol 108(7):806–814. https://doi.org/10.1007/s00392-018-1410-4

    Article  CAS  PubMed  Google Scholar 

  12. Böhm M, Swedberg K, Komajda M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L, Investigators S (2010) Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 376(9744):886–894. https://doi.org/10.1016/S0140-6736(10)61259-7

    Article  PubMed  Google Scholar 

  13. Böhm M, Borer J, Ford I, Gonzalez-Juanatey JR, Komajda M, Lopez-Sendon J, Reil JC, Swedberg K, Tavazzi L (2013) Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: analysis from the SHIFT study. Clin Res Cardiol 102(1):11–22. https://doi.org/10.1007/s00392-012-0467-8

    Article  PubMed  Google Scholar 

  14. Dyer AR, Persky V, Stamler J, Paul O, Shekelle RB, Berkson DM, Lepper M, Schoenberger JA, Lindberg HA (1980) Heart rate as a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies. Am J Epidemiol 112(6):736–749

    Article  CAS  PubMed  Google Scholar 

  15. Böhm M, Schumacher H, Leong D, Mancia G, Unger T, Schmieder R, Custodis F, Diener HC, Laufs U, Lonn E, Sliwa K, Teo K, Fagard R, Redon J, Sleight P, Anderson C, O’Donnell M, Yusuf S (2015) Systolic blood pressure variation and mean heart rate is associated with cognitive dysfunction in patients with high cardiovascular risk. Hypertension 65(3):651–661. https://doi.org/10.1161/HYPERTENSIONAHA.114.04568

    Article  CAS  PubMed  Google Scholar 

  16. Okin PM, Kjeldsen SE, Julius S, Hille DA, Dahlof B, Edelman JM, Devereux RB (2010) All-cause and cardiovascular mortality in relation to changing heart rate during treatment of hypertensive patients with electrocardiographic left ventricular hypertrophy. Eur Heart J 31(18):2271–2279. https://doi.org/10.1093/eurheartj/ehq225

    Article  CAS  PubMed  Google Scholar 

  17. Gillum RF, Makuc DM, Feldman JJ (1991) Pulse rate, coronary heart disease, and death: the NHANES I epidemiologic follow-up study. Am Heart J 121(1 Pt 1):172–177

    Article  CAS  PubMed  Google Scholar 

  18. Jensen MT, Marott JL, Lange P, Vestbo J, Schnohr P, Nielsen OW, Jensen JS, Jensen GB (2013) Resting heart rate is a predictor of mortality in COPD. Eur Respir J 42(2):341–349. https://doi.org/10.1183/09031936.00072212

    Article  PubMed  Google Scholar 

  19. Warnier MJ, Rutten FH, de Boer A, Hoes AW, De Bruin ML (2014) Resting heart rate is a risk factor for mortality in chronic obstructive pulmonary disease, but not for exacerbations or pneumonia. PLoS ONE 9(8):e105152. https://doi.org/10.1371/journal.pone.0105152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Byrd JB, Newby DE, Anderson JA, Calverley PMA, Celli BR, Cowans NJ, Crim C, Martinez FJ, Vestbo J, Yates J, Brook RD, Investigators S (2018) Blood pressure, heart rate, and mortality in chronic obstructive pulmonary disease: the SUMMIT trial. Eur Heart J 39(33):3128–3134. https://doi.org/10.1093/eurheartj/ehy451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamill V, Ford I, Fox K, Böhm M, Borer JS, Ferrari R, Komajda M, Steg PG, Tavazzi L, Tendera M, Swedberg K (2015) Repeated heart rate measurement and cardiovascular outcomes in left ventricular systolic dysfunction. Am J Med 128(10):1102–1108. https://doi.org/10.1016/j.amjmed.2015.04.042e1106

    Article  PubMed  Google Scholar 

  22. Karch A, Vogelmeier C, Welte T, Bals R, Kauczor HU, Biederer J, Heinrich J, Schulz H, Glaser S, Holle R, Watz H, Korn S, Adaskina N, Biertz F, Vogel C, Vestbo J, Wouters EF, Rabe KF, Sohler S, Koch A, Jorres RA (2016) The German COPD cohort COSYCONET: aims, methods and descriptive analysis of the study population at baseline. Respir Med 114:27–37. https://doi.org/10.1016/j.rmed.2016.03.008

    Article  PubMed  Google Scholar 

  23. Fahndrich S, Biertz F, Karch A, Kleibrink B, Koch A, Teschler H, Welte T, Kauczor HU, Janciauskiene S, Jorres RA, Greulich T, Vogelmeier CF, Bals R (2017) Cardiovascular risk in patients with alpha-1-antitrypsin deficiency. Respir Res 18(1):171. https://doi.org/10.1186/s12931-017-0655-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kahnert K, Alter P, Young D, Lucke T, Heinrich J, Huber RM, Behr J, Wacker M, Biertz F, Watz H, Bals R, Welte T, Wirtz H, Herth F, Vestbo J, Wouters EF, Vogelmeier CF, Jorres RA (2018) The revised GOLD 2017 COPD categorization in relation to comorbidities. Respir Med 134:79–85. https://doi.org/10.1016/j.rmed.2017.12.003

    Article  PubMed  Google Scholar 

  25. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ (2004) The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 350(10):1005–1012. https://doi.org/10.1056/NEJMoa021322

    Article  CAS  PubMed  Google Scholar 

  26. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J, Force AET (2005) Standardisation of spirometry. Eur Respir J 26(2):319–338. https://doi.org/10.1183/09031936.05.00034805

    Article  CAS  PubMed  Google Scholar 

  27. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, Enright PL, Hankinson JL, Ip MS, Zheng J, Stocks J, Initiative ERSGLF (2012) Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J 40(6):1324–1343. https://doi.org/10.1183/09031936.00080312

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vogel CU, Wolpert C, Wehling M (2004) How to measure heart rate? Eur J Clin Pharmacol 60(7):461–466. https://doi.org/10.1007/s00228-004-0795-3

    Article  PubMed  Google Scholar 

  29. Leitao Filho FS, Alotaibi NM, Yamasaki K, Ngan DA, Sin DD (2018) The role of beta-blockers in the management of chronic obstructive pulmonary disease. Expert Rev Respir Med 12(2):125–135. https://doi.org/10.1080/17476348.2018.1419869

    Article  CAS  PubMed  Google Scholar 

  30. Lipworth B, Wedzicha J, Devereux G, Vestbo J, Dransfield MT (2016) Beta-blockers in COPD: time for reappraisal. Eur Respir J 48(3):880–888. https://doi.org/10.1183/13993003.01847-2015

    Article  CAS  PubMed  Google Scholar 

  31. Sami R, Sadegh R, Esmailzadehha N, Mortazian S, Nazem M, Zohal M (2018) Association of anthropometric indexes with disease severity in male patients with chronic obstructive pulmonary disease in Qazvin, Iran. Am J Mens Health. https://doi.org/10.1177/1557988318760053

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ricci F, Wollmer P, Engstrom G, Fedorowski A, Hamrefors V (2018) Markers of cardiovascular autonomic dysfunction predict COPD in middle-aged subjects. Eur Respir J. https://doi.org/10.1183/13993003.02481-2017

    Article  PubMed  Google Scholar 

  33. Anker SD, von Haehling S (2011) The obesity paradox in heart failure: accepting reality and making rational decisions. Clin Pharmacol Ther 90(1):188–190. https://doi.org/10.1038/clpt.2011.72

    Article  CAS  PubMed  Google Scholar 

  34. Horwich TB, Fonarow GC, Clark AL (2018) Obesity and the obesity paradox in heart failure. Prog Cardiovasc Dis 61(2):151–156. https://doi.org/10.1016/j.pcad.2018.05.005

    Article  PubMed  Google Scholar 

  35. Alter P, Jorres RA, Watz H, Welte T, Glaser S, Schulz H, Bals R, Karch A, Wouters EFM, Vestbo J, Young D, Vogelmeier CF (2018) Left ventricular volume and wall stress are linked to lung function impairment in COPD. Int J Cardiol 261:172–178. https://doi.org/10.1016/j.ijcard.2018.02.074

    Article  PubMed  Google Scholar 

  36. Andreas S, Anker SD, Scanlon PD, Somers VK (2005) Neurohumoral activation as a link to systemic manifestations of chronic lung disease. Chest 128(5):3618–3624. https://doi.org/10.1378/chest.128.5.3618

    Article  PubMed  Google Scholar 

  37. Pan L, Dong W, Li H, Miller MR, Chen Y, Loh M, Wu S, Xu J, Yang X, Shima M, Deng F, Guo X (2018) Association patterns for size-fractioned indoor particulate matter and black carbon and autonomic function differ between patients with chronic obstructive pulmonary disease and their healthy spouses. Environ Pollut 236:40–48. https://doi.org/10.1016/j.envpol.2018.01.064

    Article  CAS  PubMed  Google Scholar 

  38. Middlekauff HR, Park J, Moheimani RS (2014) Adverse effects of cigarette and noncigarette smoke exposure on the autonomic nervous system: mechanisms and implications for cardiovascular risk. J Am Coll Cardiol 64(16):1740–1750. https://doi.org/10.1016/j.jacc.2014.06.1201

    Article  CAS  PubMed  Google Scholar 

  39. Lombardo TW, Epstein LH (1986) The nicotine paradox: effect of smoking on autonomic discrimination. Addict Behav 11(3):341–344

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Jiang Z, Chen B, Zhou L, Kong Z, Zuo S, Liu H, Yin S (2016) Cardiac autonomic function in patients with acute exacerbation of chronic obstructive pulmonary disease with and without ventricular tachycardia. BMC Pulm Med 16(1):124. https://doi.org/10.1186/s12890-016-0287-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Andreas S, Haarmann H, Klarner S, Hasenfuss G, Raupach T (2014) Increased sympathetic nerve activity in COPD is associated with morbidity and mortality. Lung 192(2):235–241. https://doi.org/10.1007/s00408-013-9544-7

    Article  CAS  PubMed  Google Scholar 

  42. Watz H, Waschki B, Meyer T, Kretschmar G, Kirsten A, Claussen M, Magnussen H (2010) Decreasing cardiac chamber sizes and associated heart dysfunction in COPD: role of hyperinflation. Chest 138(1):32–38. https://doi.org/10.1378/chest.09-2810

    Article  PubMed  Google Scholar 

  43. Smith BM, Prince MR, Hoffman EA, Bluemke DA, Liu CY, Rabinowitz D, Hueper K, Parikh MA, Gomes AS, Michos ED, Lima JAC, Barr RG (2013) Impaired left ventricular filling in COPD and emphysema: is it the heart or the lungs? The multi-ethnic study of atherosclerosis COPD study. Chest 144(4):1143–1151. https://doi.org/10.1378/chest.13-0183

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lucke T, Herrera R, Wacker M, Holle R, Biertz F, Nowak D, Huber RM, Sohler S, Vogelmeier C, Ficker JH, Muckter H, Jorres RA, Consortium C (2016) Systematic analysis of self-reported comorbidities in large cohort studies—a novel stepwise approach by evaluation of medication. PLoS One 11(10):e0163408. https://doi.org/10.1371/journal.pone.0163408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rivinius R, Helmschrott M, Ruhparwar A, Rahm AK, Darche FF, Thomas D, Bruckner T, Ehlermann P, Katus HA, Doesch AO (2018) Control of cardiac chronotropic function in patients after heart transplantation: effects of ivabradine and metoprolol succinate on resting heart rate in the denervated heart. Clin Res Cardiol 107(2):138–147. https://doi.org/10.1007/s00392-017-1165-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF) Competence Network Asthma and COPD (ASCONET). The project is funded by the BMBF with Grant number 01 GI 0881, and is supported by unrestricted Grants from AstraZeneca GmbH, Bayer Schering Pharma AG, Boehringer Ingelheim Pharma GmbH & Co. KG, Chiesi GmbH, GlaxoSmithKline, Grifols Deutschland GmbH, MSD Sharp & Dohme GmbH, Mundipharma GmbH, Novartis Deutschland GmbH, Pfizer Pharma GmbH, Takeda Pharma Vertrieb GmbH & Co. KG for patient investigations and laboratory measurements. The funding body had no involvement in the design of the study, or the collection, analysis or interpretation of the data. MB is supported by the Transregio SFB-TTR 219 S-01 of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Robert Bals.

Additional information

C. F. Vogelmeier, P. Alter, T. Welte, H. Watz, B. Waschki: Members of the German Center for Lung Research (DZL).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omlor, A.J., Trudzinski, F.C., Alqudrah, M. et al. Time-updated resting heart rate predicts mortality in patients with COPD. Clin Res Cardiol 109, 776–786 (2020). https://doi.org/10.1007/s00392-019-01572-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-019-01572-1

Keywords

Navigation