Skip to main content
Log in

Effects of renal denervation on 24-h heart rate and heart rate variability in resistant hypertension

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Catheter-based renal sympathetic denervation (RDN) can reduce sympathetic activity and blood pressure (BP) in patients with hypertension. The present study aimed at investigating the effects of RDN on heart rate (HR), number of premature captions, and heart rate variability (HRV).

Methods

A total of 105 patients (67% male, age 63.5 ± 10 years) with resistant hypertension (BP 169 ± 22/89 ± 14 mmHg) underwent bilateral RDN using a radiofrequency catheter (Symplicity Flex, Medtronic). 24-h Holter monitoring was performed at baseline and after 6 months. Besides HR profile, the number of premature atrial (PAC) and ventricular captions (PVC), time and frequency domain-based HRV were analyzed. Data are presented as mean ± standard deviation or median (interquartile range).

Results

Office systolic and diastolic BP were reduced after RDN by 21.8 ± 25.2 mmHg and 8 ± 18.7 mmHg (p < 0.001 for both), respectively. Twenty-eight (27%) patients had a reduction of < 10 mmHg in systolic BP. At baseline, mean 24-h HR was 65.7 ± 9.9 bpm. The prevalence of PAC [median 1.2 (0.3–6.2)] and PVC [median 1.2 (0.1–13.9)] was low and values of HRV were within normal limits and not different between responders and non-responders. After 6 months, patients with a baseline HR > 72 min had a significant reduction in HR by 2.3 ± 7.1 bpm. Parameters of HRV did not significantly change during follow-up. In patients with ≥ 6 PAC per hour at baseline, a significant median reduction of − 12.4 (− 37.4 to − 2.3) PAC after 6 months was documented (p = 0.002), which occurred independently from BP effects. The number of PVC was not significantly altered after RDN.

Conclusion

In patients with resistant hypertension and elevated HR or high burden of PACs, RDN was associated with a reduction of HR and number of PAC. Parameters of HRV were not changed after RDN nor were predictive of response to RDN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Böhm M, Linz D, Ukena C, Esler M, Mahfoud F (2014) Renal denervation for the treatment of cardiovascular high risk-hypertension or beyond? Circ Res 115:400–409

    Article  Google Scholar 

  2. Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G (2003) Hypertension, blood pressure, and heart rate variability: the atherosclerosis risk in communities (ARIC) study. Hypertension 42:1106–1111

    Article  CAS  Google Scholar 

  3. Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96:3224–3232

    Article  CAS  Google Scholar 

  4. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373:1275–1281

    Article  Google Scholar 

  5. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD (2009) Renal sympathetic-nerve ablation for uncontrolled hypertension. New Engl J Med 361:932–934

    Article  CAS  Google Scholar 

  6. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW et al (2013) Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension 61:457–464

    Article  CAS  Google Scholar 

  7. Grassi G, Seravalle G, Brambilla G, Trabattoni D, Cuspidi C, Corso R et al (2015) Blood pressure responses to renal denervation precede and are independent of the sympathetic and baroreflex effects. Hypertension 65:1209–1216

    Article  CAS  Google Scholar 

  8. Ukena C, Mahfoud F, Spies A, Kindermann I, Linz D, Cremers B et al (2013) Effects of renal sympathetic denervation on heart rate and atrioventricular conduction in patients with resistant hypertension. Int J Cardiol 167:2846–2851

    Article  Google Scholar 

  9. Böhm M, Mahfoud F, Townsend RR, Kandzari DE, Pocock S, Ukena C et al (2019) Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN-OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur Heart J 40:743–751

    Article  Google Scholar 

  10. Linz D, Mahfoud F, Schotten U, Ukena C, Hohl M, Neuberger HR et al (2013) Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension 61:225–231

    Article  CAS  Google Scholar 

  11. Tsioufis C, Papademetriou V, Tsiachris D, Dimitriadis K, Kasiakogias A, Kordalis A et al (2014) Drug-resistant hypertensive patients responding to multielectrode renal denervation exhibit improved heart rate dynamics and reduced arrhythmia burden. J Hum Hypertens 28:587–593

    Article  CAS  Google Scholar 

  12. Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR, Eick C et al (2012) Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol 101:63–67

    Article  Google Scholar 

  13. Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC et al (2011) Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 123:1940–1946

    Article  CAS  Google Scholar 

  14. Heart rate variability (1996) Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17:354–381

    Article  Google Scholar 

  15. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA et al (2017) Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390:2160–2170

    Article  Google Scholar 

  16. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J et al (2018) Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391:2335–2345

    Article  Google Scholar 

  17. Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S et al (2018) Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 391:2346–2355

    Article  Google Scholar 

  18. Mahfoud F, Böhm M, Azizi M, Pathak A, Durand Zaleski I, Ewen S et al (2015) Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur Heart J 36:2219–2227

    Article  Google Scholar 

  19. Lüscher TF, Mahfoud F (2014) Renal nerve ablation after SYMPLICITY HTN-3: confused at the higher level? Eur Heart. J 35:1706–1711

  20. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M et al (2018) ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 39:3021–3104

    Article  Google Scholar 

  21. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al (2016) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200

    Article  Google Scholar 

  22. Levy MN, Zieske H (1969) Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol 27:465–470

    Article  CAS  Google Scholar 

  23. Böhm M, Ukena C, Ewen S, Linz D, Zivanovic I, Hoppe U et al (2016) Renal denervation reduces office and ambulatory heart rate in patients with uncontrolled hypertension: 12-month outcomes from the global SYMPLICITY registry. J Hypertens 34:2480–2486

    Article  Google Scholar 

  24. Kannel WB, Wolf PA, Benjamin EJ, Levy D (1998) Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol 82:2N–9N

    Article  CAS  Google Scholar 

  25. Schneider MP, Hua TA, Bohm M, Wachtell K, Kjeldsen SE, Schmieder RE (2010) Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis. J Am Coll Cardiol 55:2299–2307

    Article  Google Scholar 

  26. Iwasaki YK, Nishida K, Kato T, Nattel S (2011) Atrial fibrillation pathophysiology: implications for management. Circulation 124:2264–2274

    Article  CAS  Google Scholar 

  27. Binici Z, Intzilakis T, Nielsen OW, Kober L, Sajadieh A (2010) Excessive supraventricular ectopic activity and increased risk of atrial fibrillation and stroke. Circulation 121:1904–1911

    Article  CAS  Google Scholar 

  28. Larsen BS, Kumarathurai P, Falkenberg J, Nielsen OW, Sajadieh A (2015) Excessive Atrial Ectopy and Short Atrial Runs Increase the Risk of Stroke Beyond Incident Atrial Fibrillation. J Am Coll Cardiol 66:232–241

    Article  Google Scholar 

  29. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A et al (2012) A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 60:1163–1170

    Article  Google Scholar 

  30. Pokushalov E, Romanov A, Katritsis DG, Artyomenko S, Bayramova S, Losik D et al (2014) Renal denervation for improving outcomes of catheter ablation in patients with atrial fibrillation and hypertension: early experience. Heart Rhythm 11:1131–1138

    Article  Google Scholar 

  31. Romanov A, Pokushalov E, Ponomarev D, Strelnikov A, Shabanov V, Losik D, et al (2017) Pulmonary vein isolation with concomitant renal artery denervation is associated with reduction in both arterial blood pressure and atrial fibrillation burden: data from implantable cardiac monitor. Cardiovasc Therap 35.

  32. Kiuchi MG, Chen S, Hoye NA, Purerfellner H (2018) Pulmonary vein isolation combined with spironolactone or renal sympathetic denervation in patients with chronic kidney disease, uncontrolled hypertension, paroxysmal atrial fibrillation, and a pacemaker. J Interv Card Electrophysiol 51:51–59

    Article  Google Scholar 

  33. Feyz L, Theuns DA, Bhagwandien R, Strachinaru M, Kardys I, Van Mieghem NM et al (2019) Atrial fibrillation reduction by renal sympathetic denervation: 12 months' results of the AFFORD study. Clin Res Cardiol 108:634–642

    Article  CAS  Google Scholar 

  34. de Jong MR, Hoogerwaard AF, Adiyaman A, Smit JJJ, Ramdat Misier AR, Heeg JE et al (2018) Treatment of atrial fibrillation in patients with enhanced sympathetic tone by pulmonary vein isolation or pulmonary vein isolation and renal artery denervation: clinical background and study design : The ASAF trial: ablation of sympathetic atrial fibrillation. Clin Res Cardiol 107:539–547

    Article  Google Scholar 

  35. Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK et al (2015) Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17:1341–1353

    Article  Google Scholar 

  36. Peters CD, Mathiassen ON, Vase H, Bech Norgaard J, Christensen KL, Schroeder AP et al (2017) The effect of renal denervation on arterial stiffness, central blood pressure and heart rate variability in treatment resistant essential hypertension: a substudy of a randomized sham-controlled double-blinded trial (the ReSET trial). Blood Press 26:366–380

    Article  Google Scholar 

  37. Verloop WL, Spiering W, Vink EE, Beeftink MM, Blankestijn PJ, Doevendans PA et al (2015) Denervation of the renal arteries in metabolic syndrome: the DREAMS-study. Hypertension 65:751–757

    Article  CAS  Google Scholar 

  38. Hoogerwaard AF, de Jong MR, Adiyaman A, Smit JJJ, Delnoy P, Heeg JE et al (2019) Renal sympathetic denervation induces changes in heart rate variability and is associated with a lower sympathetic tone. Clin Res Cardiol 108:22–30

    Article  Google Scholar 

  39. Tzafriri AR, Mahfoud F, Keating JH, Markham PM, Spognardi A, Wong G et al (2014) Innervation patterns may limit response to endovascular renal denervation. J Am Coll Cardiol 64:1079–1087

    Article  Google Scholar 

  40. Mahfoud F, Tunev S, Ewen S, Cremers B, Ruwart J, Schulz-Jander D et al (2015) Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J Am Coll Cardiol 66:1766–1775

    Article  Google Scholar 

Download references

Acknowledgements

CU, FM, and MB are supported by the Ministry of Science and Economy of the Saarland. FM is supported by the Deutsche Hochdruckliga. MB and FM are supported by the Deutsche Forschungsgemeinschaft (Transregio-SFB 219). All authors except TS received scientific support and speaker honorarium from Medtronic©. The authors would like to thank Irmgard Kiefer for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Ukena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukena, C., Seidel, T., Rizas, K. et al. Effects of renal denervation on 24-h heart rate and heart rate variability in resistant hypertension. Clin Res Cardiol 109, 581–588 (2020). https://doi.org/10.1007/s00392-019-01543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-019-01543-6

Keywords

Navigation