Skip to main content

Advertisement

Log in

Clinical and genetic insights into non-compaction: a meta-analysis and systematic review on 7598 individuals

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Left ventricular non-compaction has been increasingly diagnosed in recent years. However, it is still debated whether non-compaction is a pathological condition or a physiological trait. In this meta-analysis and systematic review, we compare studies, which investigated these two different perspectives. Furthermore, we provide a comprehensive overview on the clinical outcome as well as genetic background of left ventricular non-compaction cardiomyopathy in adult patients.

Methods and results

We retrieved PubMed/Medline literatures in English language from 2000 to 19/09/2018 on clinical outcome and genotype of patients with non-compaction. We summarized and extensively reviewed all studies that passed selection criteria and performed a meta-analysis on key phenotypic parameters. Altogether, 35 studies with 2271 non-compaction patients were included in our meta-analysis. The mean age at diagnosis was the mid of their fifth decade. Two-thirds of patients were male. Congenital heart diseases including atrial or ventricular septum defect or Ebstein anomaly were reported in 7% of patients. Twenty-four percent presented with family history of cardiomyopathy. The mean frequency of neuromuscular diseases was 5%. Heart rhythm abnormalities were reported frequently: conduction disease in 26%, supraventricular tachycardia in 17%, and sustained or non-sustained ventricular tachycardia in 18% of patients. Three important outcome measures were reported including systemic thromboembolic events with a mean frequency of 9%, heart transplantation with 4%, and adequate ICD therapy with 15%. Nine studies investigated the genetics of non-compaction cardiomyopathy. The most frequently mutated gene was TTN with a pooled frequency of 11%. The average frequency of MYH7 mutations was 9%, for MYBPC3 mutations 5%, and for CASQ2 and LDB3 3% each. TPM1, MIB1, ACTC1, and LMNA mutations had an average frequency of 2% each. Mutations in PLN, HCN4, TAZ, DTNA, TNNT2, and RBM20 were reported with a frequency of 1% each. We also summarized the results of eight studies investigating the non-compaction in altogether 5327 athletes, pregnant women, patients with sickle cell disease, as well as individuals from population-based cohorts, in which the presence of left ventricular hypertrabeculation ranged from 1.3 to 37%.

Conclusion

The summarized data indicate that non-compaction may lead to unfavorable outcome in different cardiomyopathy entities. The presence of key features in a multimodal diagnostic approach could distinguish between benign morphological trait and manifest cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Inspired by Oechslin et al. [55]

Similar content being viewed by others

References

  1. Arbustini E, Weidemann F, Hall JL (2014) Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases? J Am Coll Cardiol 64(17):1840–1850. https://doi.org/10.1016/j.jacc.2014.08.030

    Article  PubMed  Google Scholar 

  2. Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32(12):1446–1456. https://doi.org/10.1093/eurheartj/ehq508

    Article  PubMed  Google Scholar 

  3. Gati S, Papadakis M, Papamichael ND, Zaidi A, Sheikh N, Reed M, Sharma R, Thilaganathan B, Sharma S (2014) Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation 130(6):475–483. https://doi.org/10.1161/CIRCULATIONAHA.114.008554

    Article  PubMed  Google Scholar 

  4. Towbin JA, Lorts A, Jefferies JL (2015) Left ventricular non-compaction cardiomyopathy. Lancet 386(9995):813–825. https://doi.org/10.1016/S0140-6736(14)61282-4

    Article  PubMed  Google Scholar 

  5. Caselli S, Ferreira D, Kanawati E, Di Paolo F, Pisicchio C, Attenhofer Jost C, Spataro A, Jenni R, Pelliccia A (2016) Prominent left ventricular trabeculations in competitive athletes: a proposal for risk stratification and management. Int J Cardiol 223:590–595. https://doi.org/10.1016/j.ijcard.2016.08.272

    Article  PubMed  Google Scholar 

  6. Luijkx T, Cramer MJ, Zaidi A, Rienks R, Senden PJ, Sharma S, van Hellemondt FJ, Buckens CF, Mali WP, Velthuis BK (2012) Ethnic differences in ventricular hypertrabeculation on cardiac MRI in elite football players. Neth Heart J 20(10):389–395. https://doi.org/10.1007/s12471-012-0305-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawel N, Nacif M, Arai AE, Gomes AS, Hundley WG, Johnson WC, Prince MR, Stacey RB, Lima JA, Bluemke DA (2012) Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging 5(3):357–366. https://doi.org/10.1161/CIRCIMAGING.111.971713

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tizon-Marcos H, de la Paz Ricapito M, Pibarot P, Bertrand O, Bibeau K, Le Ven F, Sinha S, Engert J, Bedard E, Pasian S, Deschepper C, Larose E (2014) Characteristics of trabeculated myocardium burden in young and apparently healthy adults. Am J Cardiol 114(7):1094–1099. https://doi.org/10.1016/j.amjcard.2014.07.025

    Article  PubMed  Google Scholar 

  9. Weir-McCall JR, Yeap PM, Papagiorcopulo C, Fitzgerald K, Gandy SJ, Lambert M, Belch JJ, Cavin I, Littleford R, Macfarlane JA, Matthew SZ, Nicholas RS, Struthers AD, Sullivan F, Waugh SA, White RD, Houston JG (2016) Left ventricular noncompaction: anatomical phenotype or distinct cardiomyopathy? J Am Coll Cardiol 68(20):2157–2165. https://doi.org/10.1016/j.jacc.2016.08.054

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cai J, Bryant JA, Le TT, Su B, de Marvao A, O’Regan DP, Cook SA, Chin CW (2017) Fractal analysis of left ventricular trabeculations is associated with impaired myocardial deformation in healthy Chinese. J Cardiovasc Magn Reson 19(1):102. https://doi.org/10.1186/s12968-017-0413-z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sedaghat-Hamedani F, Haas J, Zhu F, Geier C, Kayvanpour E, Liss M, Lai A, Frese K, Pribe-Wolferts R, Amr A, Li DT, Samani OS, Carstensen A, Bordalo DM, Muller M, Fischer C, Shao J, Wang J, Nie M, Yuan L, Hassfeld S, Schwartz C, Zhou M, Zhou Z, Shu Y, Wang M, Huang K, Zeng Q, Cheng L, Fehlmann T, Ehlermann P, Keller A, Dieterich C, Streckfuss-Bomeke K, Liao Y, Gotthardt M, Katus HA, Meder B (2017) Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J 38(46):3449–3460. https://doi.org/10.1093/eurheartj/ehx545

    Article  CAS  PubMed  Google Scholar 

  12. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R (2000) Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36(2):493–500

    Article  CAS  PubMed  Google Scholar 

  13. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29(2):270–276. https://doi.org/10.1093/eurheartj/ehm342

    Article  PubMed  Google Scholar 

  14. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB, American Heart A, Council on Clinical Cardiology HF, Transplantation C, Quality of C, Outcomes R, Functional G, Translational Biology Interdisciplinary Working G, Council on E, Prevention (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113(14):1807–1816. https://doi.org/10.1161/CIRCULATIONAHA.106.174287

    Article  PubMed  Google Scholar 

  15. Xing Y, Ichida F, Matsuoka T, Isobe T, Ikemoto Y, Higaki T, Tsuji T, Haneda N, Kuwabara A, Chen R, Futatani T, Tsubata S, Watanabe S, Watanabe K, Hirono K, Uese K, Miyawaki T, Bowles KR, Bowles NE, Towbin JA (2006) Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 88(1):71–77. https://doi.org/10.1016/j.ymgme.2005.11.009

    Article  CAS  PubMed  Google Scholar 

  16. Stollberger C, Finsterer J, Blazek G (2002) Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am J Cardiol 90(8):899–902

    Article  PubMed  Google Scholar 

  17. Sasse-Klaassen S, Gerull B, Oechslin E, Jenni R, Thierfelder L (2003) Isolated noncompaction of the left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of patients. Am J Med Genet A 119A(2):162–167. https://doi.org/10.1002/ajmg.a.20075

    Article  PubMed  Google Scholar 

  18. Sengupta PP, Mohan JC, Mehta V, Jain V, Arora R, Pandian NG, Khandheria BK (2004) Comparison of echocardiographic features of noncompaction of the left ventricle in adults versus idiopathic dilated cardiomyopathy in adults. Am J Cardiol 94(3):389–391. https://doi.org/10.1016/j.amjcard.2004.04.046

    Article  PubMed  Google Scholar 

  19. Kawasaki T, Azuma A, Taniguchi T, Asada S, Kamitani T, Kawasaki S, Matsubara H, Sugihara H (2005) Heart rate variability in adult patients with isolated left ventricular noncompaction. Int J Cardiol 99(1):147–150. https://doi.org/10.1016/j.ijcard.2003.11.029

    Article  PubMed  Google Scholar 

  20. Murphy RT, Thaman R, Blanes JG, Ward D, Sevdalis E, Papra E, Kiotsekoglou A, Tome MT, Pellerin D, McKenna WJ, Elliott PM (2005) Natural history and familial characteristics of isolated left ventricular non-compaction. Eur Heart J 26(2):187–192. https://doi.org/10.1093/eurheartj/ehi025

    Article  PubMed  Google Scholar 

  21. Lofiego C, Biagini E, Ferlito M, Pasquale F, Rocchi G, Perugini E, Leone O, Bracchetti G, Caliskan K, Branzi A, ten Cate FJ, Rapezzi C (2006) Paradoxical contributions of non-compacted and compacted segments to global left ventricular dysfunction in isolated left ventricular noncompaction. Am J Cardiol 97(5):738–741. https://doi.org/10.1016/j.amjcard.2005.09.109

    Article  PubMed  Google Scholar 

  22. Aras D, Tufekcioglu O, Ergun K, Ozeke O, Yildiz A, Topaloglu S, Deveci B, Sahin O, Kisacik HL, Korkmaz S (2006) Clinical features of isolated ventricular noncompaction in adults long-term clinical course, echocardiographic properties, and predictors of left ventricular failure. J Card Fail 12(9):726–733. https://doi.org/10.1016/j.cardfail.2006.08.002

    Article  PubMed  Google Scholar 

  23. Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, Greutmann M, Hurlimann D, Yegitbasi M, Pons L, Gramlich M, Drenckhahn JD, Heuser A, Berger F, Jenni R, Thierfelder L (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117(22):2893–2901. https://doi.org/10.1161/CIRCULATIONAHA.107.746164

    Article  CAS  PubMed  Google Scholar 

  24. Kohli SK, Pantazis AA, Shah JS, Adeyemi B, Jackson G, McKenna WJ, Sharma S, Elliott PM (2008) Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J 29(1):89–95. https://doi.org/10.1093/eurheartj/ehm481

    Article  PubMed  Google Scholar 

  25. Stanton C, Bruce C, Connolly H, Brady P, Syed I, Hodge D, Asirvatham S, Friedman P (2009) Isolated left ventricular noncompaction syndrome. Am J Cardiol 104(8):1135–1138. https://doi.org/10.1016/j.amjcard.2009.05.062

    Article  PubMed  Google Scholar 

  26. Hoedemaekers YM, Caliskan K, Michels M, Frohn-Mulder I, van der Smagt JJ, Phefferkorn JE, Wessels MW, ten Cate FJ, Sijbrands EJ, Dooijes D, Majoor-Krakauer DF (2010) The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy. Circ Cardiovasc Genet 3(3):232–239. https://doi.org/10.1161/CIRCGENETICS.109.903898

    Article  PubMed  Google Scholar 

  27. Kobza R, Steffel J, Erne P, Schoenenberger AW, Hurlimann D, Luscher TF, Jenni R, Duru F (2010) Implantable cardioverter-defibrillator and cardiac resynchronization therapy in patients with left ventricular noncompaction. Heart Rhythm 7(11):1545–1549. https://doi.org/10.1016/j.hrthm.2010.05.025

    Article  PubMed  Google Scholar 

  28. Habib G, Charron P, Eicher JC, Giorgi R, Donal E, Laperche T, Boulmier D, Pascal C, Logeart D, Jondeau G, Cohen-Solal A, Working Groups ‘Heart F, Cardiomyopathies, Echocardiography’ of the French Society of C (2011) Isolated left ventricular non-compaction in adults: clinical and echocardiographic features in 105 patients. Results from a French registry. Eur J Heart Fail 13(2):177–185. https://doi.org/10.1093/eurjhf/hfq225

    Article  PubMed  Google Scholar 

  29. Probst S, Oechslin E, Schuler P, Greutmann M, Boye P, Knirsch W, Berger F, Thierfelder L, Jenni R, Klaassen S (2011) Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet 4(4):367–374. https://doi.org/10.1161/CIRCGENETICS.110.959270

    Article  CAS  PubMed  Google Scholar 

  30. Steffel J, Hurlimann D, Namdar M, Despotovic D, Kobza R, Wolber T, Holzmeister J, Haegeli L, Brunckhorst C, Luscher TF, Jenni R, Duru F (2011) Long-term follow-up of patients with isolated left ventricular noncompaction: role of electrocardiography in predicting poor outcome. Circ J 75(7):1728–1734

    Article  PubMed  Google Scholar 

  31. Dellegrottaglie S, Pedrotti P, Roghi A, Pedretti S, Chiariello M, Perrone-Filardi P (2012) Regional and global ventricular systolic function in isolated ventricular non-compaction: pathophysiological insights from magnetic resonance imaging. Int J Cardiol 158(3):394–399. https://doi.org/10.1016/j.ijcard.2011.01.063

    Article  PubMed  Google Scholar 

  32. Ning XH, Tang M, Chen KP, Hua W, Chen RH, Sha J, Liu ZM, Zhang S (2012) The prognostic significance of fragmented QRS in patients with left ventricular noncompaction cardiomyopathy. Can J Cardiol 28(4):508–514. https://doi.org/10.1016/j.cjca.2012.01.011

    Article  PubMed  Google Scholar 

  33. Stahli BE, Gebhard C, Biaggi P, Klaassen S, Valsangiacomo Buechel E, Attenhofer Jost CH, Jenni R, Tanner FC, Greutmann M (2013) Left ventricular non-compaction: prevalence in congenital heart disease. Int J Cardiol 167(6):2477–2481. https://doi.org/10.1016/j.ijcard.2012.05.095

    Article  PubMed  Google Scholar 

  34. Luxan G, Casanova JC, Martinez-Poveda B, Prados B, D’Amato G, MacGrogan D, Gonzalez-Rajal A, Dobarro D, Torroja C, Martinez F, Izquierdo-Garcia JL, Fernandez-Friera L, Sabater-Molina M, Kong YY, Pizarro G, Ibanez B, Medrano C, Garcia-Pavia P, Gimeno JR, Monserrat L, Jimenez-Borreguero LJ, de la Pompa JL (2013) Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 19(2):193–201. https://doi.org/10.1038/nm.3046

    Article  CAS  PubMed  Google Scholar 

  35. Ashrith G, Gupta D, Hanmer J, Weiss RM (2014) Cardiovascular magnetic resonance characterization of left ventricular non-compaction provides independent prognostic information in patients with incident heart failure or suspected cardiomyopathy. J Cardiovasc Magn Reson 16:64. https://doi.org/10.1186/s12968-014-0064-2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Peters F, Khandheria BK, Botha F, Libhaber E, Matioda H, Dos Santos C, Govender S, Meel R, Essop MR (2014) Clinical outcomes in patients with isolated left ventricular noncompaction and heart failure. J Card Fail 20(10):709–715. https://doi.org/10.1016/j.cardfail.2014.07.007

    Article  PubMed  Google Scholar 

  37. Tian T, Wang J, Wang H, Sun K, Wang Y, Jia L, Zou Y, Hui R, Zhou X, Song L (2015) A low prevalence of sarcomeric gene variants in a Chinese cohort with left ventricular non-compaction. Heart Vessels 30(2):258–264. https://doi.org/10.1007/s00380-014-0503-x

    Article  PubMed  Google Scholar 

  38. Cetin MS, Ozcan Cetin EH, Canpolat U, Cay S, Topaloglu S, Temizhan A, Aydogdu S (2016) Usefulness of fragmented QRS complex to predict arrhythmic events and cardiovascular mortality in patients with noncompaction cardiomyopathy. Am J Cardiol 117(9):1516–1523. https://doi.org/10.1016/j.amjcard.2016.02.022

    Article  PubMed  Google Scholar 

  39. Diwadkar S, Nallamshetty L, Rojas C, Athienitis A, Declue C, Cox C, Patel A, Chae SH (2017) Echocardiography fails to detect left ventricular noncompaction in a cohort of patients with noncompaction on cardiac magnetic resonance imaging. Clin Cardiol 40(6):364–369. https://doi.org/10.1002/clc.22669

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gaye ND, Ngaide AA, Bah MB, Babaka K, Mbaye A, Abdoul K (2017) Non-compaction of left ventricular myocardium in sub-Saharan African adults. Heart Asia 9(2):e010884. https://doi.org/10.1136/heartasia-2017-010884

    Article  PubMed  PubMed Central  Google Scholar 

  41. Salazar-Mendiguchia J, Gonzalez-Costello J, Oliveras T, Gual F, Lupon J, Manito N (2017) Long-term follow-up of symptomatic adult patients with noncompaction cardiomyopathy. Rev Esp Cardiol (Engl Ed). https://doi.org/10.1016/j.rec.2017.11.021

    Article  Google Scholar 

  42. Zhou H, Lin X, Fang L, Zhu W, Zhao X, Ding H, Jiang M, Ge H, Fang Q, He B (2017) Prolonged QTc indicates the clinical severity and poor prognosis in patients with isolated left ventricular non-compaction. Int J Cardiovasc Imaging 33(12):2013–2020. https://doi.org/10.1007/s10554-017-1209-9

    Article  PubMed  Google Scholar 

  43. Stampfli SF, Erhart L, Hagenbuch N, Stahli BE, Gruner C, Greutmann M, Niemann M, Kaufmann BA, Jenni R, Held L, Tanner FC (2017) Prognostic power of NT-proBNP in left ventricular non-compaction cardiomyopathy. Int J Cardiol 236:321–327. https://doi.org/10.1016/j.ijcard.2017.02.064

    Article  PubMed  Google Scholar 

  44. Arenas IA, Mihos CG, DeFaria Yeh D, Yucel E, Elmahdy HM, Santana O (2018) Echocardiographic and clinical markers of left ventricular ejection fraction and moderate or greater systolic dysfunction in left ventricular noncompaction cardiomyopathy. Echocardiography 35(7):941–948. https://doi.org/10.1111/echo.13873

    Article  PubMed  Google Scholar 

  45. Stollberger C, Wegner C, Finsterer J (2018) Left ventricular hypertrabeculation/noncompaction, cardiac phenotype, and neuromuscular disorders. Herz. https://doi.org/10.1007/s00059-018-4695-1

    Article  PubMed  Google Scholar 

  46. van Waning JI, Caliskan K, Hoedemaekers YM, van Spaendonck-Zwarts KY, Baas AF, Boekholdt SM, van Melle JP, Teske AJ, Asselbergs FW, Backx A, du Marchie Sarvaas GJ, Dalinghaus M, Breur J, Linschoten MPM, Verlooij LA, Kardys I, Dooijes D, Lekanne Deprez RH, AS IJ, van den Berg MP, Hofstra RMW, van Slegtenhorst MA, Jongbloed JDH, Majoor-Krakauer D (2018) Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol 71(7):711–722. https://doi.org/10.1016/j.jacc.2017.12.019

    Article  PubMed  Google Scholar 

  47. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005

    Article  PubMed  Google Scholar 

  48. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schwarzer G (2007) meta: an R package for meta-analysis. R news 7(3):40–45

    Google Scholar 

  50. Attenhofer Jost CH, Connolly HM, Warnes CA, O’Leary P, Tajik AJ, Pellikka PA, Seward JB (2004) Noncompacted myocardium in Ebstein’s anomaly: initial description in three patients. J Am Soc Echocardiogr 17(6):677–680. https://doi.org/10.1016/j.echo.2004.02.013

    Article  PubMed  Google Scholar 

  51. Schweizer PA, Koenen M, Katus HA, Thomas D (2017) A distinct cardiomyopathy: HCN4 syndrome comprising myocardial noncompaction, bradycardia, mitral valve defects, and aortic dilation. J Am Coll Cardiol 69(9):1209–1210. https://doi.org/10.1016/j.jacc.2016.10.085

    Article  PubMed  Google Scholar 

  52. Gati S, Papadakis M, Van Niekerk N, Reed M, Yeghen T, Sharma S (2013) Increased left ventricular trabeculation in individuals with sickle cell anaemia: physiology or pathology? Int J Cardiol 168(2):1658–1660. https://doi.org/10.1016/j.ijcard.2013.03.039

    Article  CAS  PubMed  Google Scholar 

  53. Miszalski-Jamka K, Jefferies JL, Mazur W, Glowacki J, Hu J, Lazar M, Gibbs RA, Liczko J, Klys J, Venner E, Muzny DM, Rycaj J, Bialkowski J, Kluczewska E, Kalarus Z, Jhangiani S, Al-Khalidi H, Kukulski T, Lupski JR, Craigen WJ, Bainbridge MN (2017) Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ Cardiovasc Genet. https://doi.org/10.1161/CIRCGENETICS.117.001763

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zemrak F, Ahlman MA, Captur G, Mohiddin SA, Kawel-Boehm N, Prince MR, Moon JC, Hundley WG, Lima JA, Bluemke DA, Petersen SE (2014) The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J Am Coll Cardiol 64(19):1971–1980. https://doi.org/10.1016/j.jacc.2014.08.035

    Article  PubMed  PubMed Central  Google Scholar 

  55. Oechslin E, Jenni R (2018) Left ventricular noncompaction: from physiologic remodeling to noncompaction cardiomyopathy. J Am Coll Cardiol 71(7):723–726. https://doi.org/10.1016/j.jacc.2017.12.031

    Article  PubMed  Google Scholar 

  56. Stollberger C, Blazek G, Winkler-Dworak M, Finsterer J (2008) [Sex differences in left ventricular noncompaction in patients with and without neuromuscular disorders]. Rev Esp Cardiol 61(2):130–136

    Article  PubMed  Google Scholar 

  57. Nucifora G, Aquaro GD, Pingitore A, Masci PG, Lombardi M (2011) Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. Eur J Heart Fail 13(2):170–176. https://doi.org/10.1093/eurjhf/hfq222

    Article  PubMed  Google Scholar 

  58. Bertini M, Ziacchi M, Biffi M, Biagini E, Rocchi G, Martignani C, Ferlito M, Pasquale F, Cervi E, Branzi A, Rapezzi C, Boriani G (2011) Effects of cardiac resynchronisation therapy on dilated cardiomyopathy with isolated ventricular non-compaction. Heart 97(4):295–300. https://doi.org/10.1136/hrt.2010.211607

    Article  PubMed  Google Scholar 

  59. Kayvanpour E, Katus HA, Meder B (2015) Determined to fail—the role of genetic mechanisms in heart failure. Curr Heart Fail Rep 12(5):333–338. https://doi.org/10.1007/s11897-015-0264-6

    Article  CAS  PubMed  Google Scholar 

  60. Moric-Janiszewska E, Markiewicz-Loskot G (2008) Genetic heterogeneity of left-ventricular noncompaction cardiomyopathy. Clin Cardiol 31(5):201–204. https://doi.org/10.1002/clc.20202

    Article  PubMed  Google Scholar 

  61. Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, van der Bilt IA, Baars MJ, van Haelst PL, Caliskan K, Hoedemaekers YM, Le Scouarnec S, Redon R, Pinto YM, Christiaans I, Wilde AA, Bezzina CR (2014) HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol 64(8):745–756. https://doi.org/10.1016/j.jacc.2014.05.045

    Article  CAS  PubMed  Google Scholar 

  62. Millat G, Janin A, de Tauriac O, Roux A, Dauphin C (2015) HCN4 mutation as a molecular explanation on patients with bradycardia and non-compaction cardiomyopathy. Eur J Med Genet 58(9):439–442. https://doi.org/10.1016/j.ejmg.2015.06.004

    Article  PubMed  Google Scholar 

  63. Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, Lai A, Amr A, Haas J, Proctor T, Ehlermann P, Jensen K, Katus HA, Meder B (2018) Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol 107(1):30–41. https://doi.org/10.1007/s00392-017-1155-5

    Article  PubMed  Google Scholar 

  64. Haas J, Mester S, Lai A, Frese KS, Sedaghat-Hamedani F, Kayvanpour E, Rausch T, Nietsch R, Boeckel JN, Carstensen A, Volkers M, Dietrich C, Pils D, Amr A, Holzer DB, Martins Bordalo D, Oehler D, Weis T, Mereles D, Buss S, Riechert E, Wirsz E, Wuerstle M, Korbel JO, Keller A, Katus HA, Posch AE, Meder B (2018) Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. EMBO Mol Med 10(1):107–120. https://doi.org/10.15252/emmm.201707838

    Article  CAS  PubMed  Google Scholar 

  65. Cazorla O, Wu Y, Irving TC, Granzier H (2001) Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88(10):1028–1035

    Article  CAS  PubMed  Google Scholar 

  66. Li S, Guo W, Dewey CN, Greaser ML (2013) Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res 41(4):2659–2672. https://doi.org/10.1093/nar/gks1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schafer S, de Marvao A, Adami E, Fiedler LR, Ng B, Khin E, Rackham OJ, van Heesch S, Pua CJ, Kui M, Walsh R, Tayal U, Prasad SK, Dawes TJ, Ko NS, Sim D, Chan LL, Chin CW, Mazzarotto F, Barton PJ, Kreuchwig F, de Kleijn DP, Totman T, Biffi C, Tee N, Rueckert D, Schneider V, Faber A, Regitz-Zagrosek V, Seidman JG, Seidman CE, Linke WA, Kovalik JP, O’Regan D, Ware JS, Hubner N, Cook SA (2017) Titin-truncating variants affect heart function in disease cohorts and the general population. Nat Genet 49(1):46–53. https://doi.org/10.1038/ng.3719

    Article  CAS  PubMed  Google Scholar 

  68. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85(3):1093–1129. https://doi.org/10.1152/physrev.00006.2004

    Article  CAS  PubMed  Google Scholar 

  69. Neishabouri SH, Hutson SM, Davoodi J (2015) Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy. Amino Acids 47(6):1167–1182. https://doi.org/10.1007/s00726-015-1944-y

    Article  CAS  PubMed  Google Scholar 

  70. Ware JS, Cook SA (2018) Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat Rev Cardiol 15(4):241–252. https://doi.org/10.1038/nrcardio.2017.190

    Article  CAS  PubMed  Google Scholar 

  71. Cao Q, Shen Y, Liu X, Yu X, Yuan P, Wan R, Liu X, Peng X, He W, Pu J, Hong K (2017) Phenotype and functional analyses in a transgenic mouse model of left ventricular noncompaction caused by a DTNA mutation. Int Heart J 58(6):939–947. https://doi.org/10.1536/ihj.16-019

    Article  CAS  PubMed  Google Scholar 

  72. Phoon CK, Acehan D, Schlame M, Stokes DL, Edelman-Novemsky I, Yu D, Xu Y, Viswanathan N, Ren M (2012) Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction. J Am Heart Assoc. https://doi.org/10.1161/JAHA.111.000455

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K, Ebert AD, Shukla P, Abilez OJ, Churko JM, Karakikes I, Jung G, Ichida F, Wu SM, Snyder MP, Bernstein D, Wu JC (2016) iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 18(10):1031–1042. https://doi.org/10.1038/ncb3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Anderson RH, Jensen B, Mohun TJ, Petersen SE, Aung N, Zemrak F, Planken RN, MacIver DH (2017) Key questions relating to left ventricular noncompaction cardiomyopathy: is the emperor still wearing any clothes? Can J Cardiol 33(6):747–757. https://doi.org/10.1016/j.cjca.2017.01.017

    Article  PubMed  Google Scholar 

  75. Oechslin E, Jenni R (2017) Nosology of noncompaction cardiomyopathy: the emperor still wears clothes! Can J Cardiol 33(6):701–704. https://doi.org/10.1016/j.cjca.2017.04.003

    Article  PubMed  Google Scholar 

  76. Gati S, Rajani R, Carr-White GS, Chambers JB (2014) Adult left ventricular noncompaction: reappraisal of current diagnostic imaging modalities. JACC Cardiovasc Imaging 7(12):1266–1275. https://doi.org/10.1016/j.jcmg.2014.09.005

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Meder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayvanpour, E., Sedaghat-Hamedani, F., Gi, WT. et al. Clinical and genetic insights into non-compaction: a meta-analysis and systematic review on 7598 individuals. Clin Res Cardiol 108, 1297–1308 (2019). https://doi.org/10.1007/s00392-019-01465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-019-01465-3

Keywords

Navigation