Skip to main content
Log in

Biventricular myocardial strain analysis using cardiac magnetic resonance feature tracking (CMR-FT) in patients with distinct types of right ventricular diseases comparing arrhythmogenic right ventricular cardiomyopathy (ARVC), right ventricular outflow-tract tachycardia (RVOT-VT), and Brugada syndrome (BrS)

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Objectives

As underlying heart diseases of right ventricular tachyarrhythmias, ARVC causes wall-motion abnormalities based on fibrofatty myocardial degeneration, while RVOT-VT and BrS are thought to lack phenotypic MR characteristics. To examine whether cardiac magnetic resonance (CMR) feature tracking (FT) in addition to ARVC objectively facilitates detection of myocardial functional impairments in RVOT-VT and BrS.

Methods

Cine MR datasets of four retrospectively enrolled, age-matched study groups [n = 65; 16 ARVC, 26 RVOT-VT, 9 BrS, 14 healthy volunteers (HV)] were independently assessed by two distinctly experienced investigators regarding myocardial function using CMR-FT. Global strain (%) and strainrate (s−1) in radial and longitudinal orientation were assessed at RVOT as well as for left (LV) and right (RV) ventricle at a basal, medial and apical section with the addition of a biventricular circumferential orientation.

Results

RV longitudinal and radial basal strain (%) in ARVC (− 12.9 ± 4.2; 11.4 ± 5.1) were significantly impaired compared to RVOT-VT (− 18.0 ± 2.5, p ≤ 0.005; 16.4 ± 5.2, p ≤ 0.05). Synergistically, RVOT endocardial radial strain (%) in ARVC (33.8 ± 22.7) was significantly lower (p ≤ 0.05) than in RVOT-VT (54.3 ± 14.5). For differentiation against BrS, RV basal and medial radial strain values (%) (13.3 ± 6.1; 11.8 ± 2.9) were significantly reduced when compared to HV (21.0 ± 6.9, p ≤ 0.05; 20.1 ± 6.6, p ≤ 0.005), even in case of a normal RV ejection fraction (EF) (> 45%; n = 6) (12.0 ± 2.7 vs. 20.1 ± 6.6, p ≤ 0.05).

Conclusions

CMR-FT facilitates relevant differentiation in patients with right ventricular tachyarrhythmias: between ARVC against RVOT-VT and HV as well as between BrS with even a preserved EF against HV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ARVC:

Arrhythmogenic right ventricular cardiomyopathy

AUC:

Area under curve

BrS:

Brugada syndrome

CMR:

Cardiac magnetic resonance

DSC-2:

Desmocolin-2

DSG-2:

Desmoglein-2

EF:

Ejection fraction

FT:

Feature tracking

LV:

Left ventricle left ventricular

LVEDVI:

Left ventricular end diastolic volume index

LVEF:

Left ventricular ejection fraction

LVESVI:

Left ventricular end systolic volume index

PKP-2:

Plakophillin-2

ROC:

Receiver operating curve

RV:

Right ventricle/right ventricular

RVEDVI:

Right ventricular end diastolic volume index

RVEF:

Right ventricular ejection fraction

RVESVI:

Right ventricular end systolic volume index

RVOT:

Right ventricular outflow tract

RVOT-VT:

Right ventricular outflow tract tachycardia

SA:

Short axis

SCD:

Sudden cardiac death

SCN5A:

Ion channel mutation in Brugada syndrome

SD:

Standard deviation

TFS:

Task Force Score

WMA:

Wall-motion abnormalities

4 CH:

Four chamber

References

  1. Riele te ASJM, Tandri H, Bluemke DA (2014) Arrhythmogenic right ventricular cardiomyopathy (ARVC): cardiovascular magnetic resonance update. J Cardiovasc Magn Reson 16:50. https://doi.org/10.1186/s12968-014-0050-8

    Article  Google Scholar 

  2. Azaouagh A, Churzidse S, Konorza T, Erbel R (2011) Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a review and update. Clin Res Cardiol 100:383–394. https://doi.org/10.1007/s00392-011-0295-2

    Article  CAS  PubMed  Google Scholar 

  3. Marcus FI, McKenna WJ, Sherrill D et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121:1533–1541. https://doi.org/10.1161/CIRCULATIONAHA.108.840827

    Article  PubMed  PubMed Central  Google Scholar 

  4. Antzelevitch C, Brugada P, Borggrefe M et al (2005) Brugada syndrome: report of the second consensus conference: endorsed by the heart rhythm society and the european heart rhythm association. Circulation 111:659–670

    Article  PubMed  Google Scholar 

  5. Wilde AAM, Antzelevitch C, Borggrefe M et al (2002) Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation 106:2514–2519

    Article  PubMed  Google Scholar 

  6. Paul M, Schulze-Bahr E, Eckardt L et al (2005) Right ventricular tachyarrhythmias–diagnostics and therapy. Herzschrittmacherther Elektrophysiol 16:260–269. https://doi.org/10.1007/s00399-005-0493-6

    Article  CAS  PubMed  Google Scholar 

  7. Basso C, Corrado D, Marcus FI et al (2009) Arrhythmogenic right ventricular cardiomyopathy. Lancet 373:1289–1300. https://doi.org/10.1016/S0140-6736(09)60256-7

    Article  PubMed  Google Scholar 

  8. McKenna WJ, Thiene G, Nava A et al (1994) Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. task force of the working group myocardial and pericardial disease of the european society of cardiology and of the scientific council on cardiomyopathies of the international society and federation of cardiology. Br Heart J 71:215–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fairbairn TA, Motwani M, Greenwood JP, Plein S (2012) CMR for the diagnosis of right heart disease. JACC Cardiovasc Imaging 5:227–229. https://doi.org/10.1016/j.jcmg.2011.09.023

    Article  PubMed  Google Scholar 

  10. Riele te ASJM, Tandri H, Sanborn DM, Bluemke DA (2015) Noninvasive multimodality imaging in ARVD/C. JACC Cardiovasc Imaging 8:597–611. https://doi.org/10.1016/j.jcmg.2015.02.007

    Article  Google Scholar 

  11. Quarta G, Husain SI, Flett AS et al (2013) Arrhythmogenic right ventricular cardiomyopathy mimics: role of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:16. https://doi.org/10.1186/1532-429X-15-16

    Article  PubMed  PubMed Central  Google Scholar 

  12. Heermann P, Hedderich DM, Paul M et al (2014) Biventricular myocardial strain analysis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) using cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 16:75. https://doi.org/10.1186/s12968-014-0075-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marwick TH (2006) Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol 47:1313–1327. https://doi.org/10.1016/j.jacc.2005.11.063

    Article  PubMed  Google Scholar 

  14. Sutherland GR, Di Salvo G, Claus P et al (2004) Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr 17:788–802. https://doi.org/10.1016/j.echo.2004.03.027

    Article  PubMed  Google Scholar 

  15. Kang Y, Cheng L, Li L et al (2013) Early detection of anthracycline-induced cardiotoxicity using two-dimensional speckle tracking echocardiography. Cardiol J 20:592–599. https://doi.org/10.5603/CJ.2013.0158

    Article  PubMed  Google Scholar 

  16. Hilde JM, Skjørten I, Grøtta OJ et al (2013) Right ventricular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension. J Am Coll Cardiol 62:1103–1111. https://doi.org/10.1016/j.jacc.2013.04.091

    Article  PubMed  Google Scholar 

  17. Tadic M, Majstorovic A, Pencic B et al (2014) The impact of high-normal blood pressure on left ventricular mechanics: a three-dimensional and speckle tracking echocardiography study. Int J Cardiovasc Imaging 30:699–711. https://doi.org/10.1007/s10554-014-0382-3

    Article  PubMed  Google Scholar 

  18. Zoroufian A, Razmi T, Taghavi-Shavazi M et al (2014) Evaluation of subclinical left ventricular dysfunction in diabetic patients: longitudinal strain velocities and left ventricular dyssynchrony by two-dimensional speckle tracking echocardiography study. Echocardiography 31:456–463. https://doi.org/10.1111/echo.12389

    Article  PubMed  Google Scholar 

  19. Saccheri MC, Cianciulli TF, Lax JA et al (2013) Two-dimensional speckle tracking echocardiography for early detection of myocardial damage in young patients with fabry disease. Echocardiography 30:1069–1077. https://doi.org/10.1111/echo.12216

    Article  PubMed  Google Scholar 

  20. Cusmà Piccione M, Zito C, Bagnato G et al (2013) Role of 2D strain in the early identification of left ventricular dysfunction and in the risk stratification of systemic sclerosis patients. Cardiovasc Ultrasound 11:6. https://doi.org/10.1186/1476-7120-11-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Markowitz SM, Weinsaft JW, Waldman L et al (2014) Reappraisal of cardiac magnetic resonance imaging in idiopathic outflow tract arrhythmias. J Cardiovasc Electrophysiol 25:1328–1335. https://doi.org/10.1111/jce.12503

    Article  PubMed  PubMed Central  Google Scholar 

  22. Decher N, Ortiz-Bonnin B, Friedrich C et al (2017) Sodium permeable and “hypersensitive” TREK-1 channels cause ventricular tachycardia. EMBO Mol Med 9:403–414. https://doi.org/10.15252/emmm.201606690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol 20:1391–1396

    Article  CAS  PubMed  Google Scholar 

  24. Antzelevitch C, Nof E (2008) Brugada syndrome: recent advances and controversies. Curr Cardiol Rep 10:376–383

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brugada R, Brugada J, Antzelevitch C et al (2000) Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 101:510–515

    Article  CAS  PubMed  Google Scholar 

  26. Priori SG, Wilde AA, Horie M et al (2013) HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 10:1932–1963. https://doi.org/10.1016/j.hrthm.2013.05.014

    Article  PubMed  Google Scholar 

  27. Catalano O, Antonaci S, Moro G et al (2009) Magnetic resonance investigations in Brugada syndrome reveal unexpectedly high rate of structural abnormalities. Eur Heart J 30:2241–2248. https://doi.org/10.1093/eurheartj/ehp252

    Article  PubMed  Google Scholar 

  28. Rudic B, Schimpf R, Veltmann C et al (2016) Brugada syndrome: clinical presentation and genotype-correlation with magnetic resonance imaging parameters. Europace 18:1411–1419. https://doi.org/10.1093/europace/euv300

    Article  PubMed  Google Scholar 

  29. Iacoviello M, Forleo C, Puzzovivo A et al (2011) Altered two-dimensional strain measures of the right ventricle in patients with Brugada syndrome and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Eur J Echocardiogr 12:773–781. https://doi.org/10.1093/ejechocard/jer139

    Article  PubMed  Google Scholar 

  30. Hor KN, Gottliebson WM, Carson C et al (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3:144–151. https://doi.org/10.1016/j.jcmg.2009.11.006

    Article  PubMed  Google Scholar 

  31. Hor KN, Baumann R, Pedrizzetti G et al (2011) Magnetic resonance derived myocardial strain assessment using feature tracking. J Vis Exp. https://doi.org/10.3791/2356

    Article  PubMed  PubMed Central  Google Scholar 

  32. Orwat S, Kempny A, Diller G-P et al (2014) Cardiac magnetic resonance feature tracking: a novel method to assess myocardial strain. Comparison with echocardiographic speckle tracking in healthy volunteers and in patients with left ventricular hypertrophy. Kardiol Pol 72:363–371. https://doi.org/10.5603/KP.a2013.0319

    Article  PubMed  Google Scholar 

  33. Kempny A, Fernández-Jiménez R, Orwat S et al (2012) Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of fallot and healthy controls. J Cardiovasc Magn Reson 14:32. https://doi.org/10.1186/1532-429X-14-32

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kempny A, Diller G-P, Orwat S et al (2012) Right ventricular-left ventricular interaction in adults with tetralogy of fallot: a combined cardiac magnetic resonance and echocardiographic speckle tracking study. Int J Cardiol 154:259–264. https://doi.org/10.1016/j.ijcard.2010.09.031

    Article  PubMed  Google Scholar 

  35. Schuster A, Kutty S, Padiyath A et al (2011) Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. J Cardiovasc Magn Reson 13:58. https://doi.org/10.1186/1532-429X-13-58

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schuster A, Paul M, Bettencourt N et al (2013) Cardiovascular magnetic resonance myocardial feature tracking for quantitative viability assessment in ischemic cardiomyopathy. Int J Cardiol 166:413–420. https://doi.org/10.1016/j.ijcard.2011.10.137

    Article  PubMed  Google Scholar 

  37. Maret E, Todt T, Brudin L et al (2009) Functional measurements based on feature tracking of cine magnetic resonance images identify left ventricular segments with myocardial scar. Cardiovasc Ultrasound 7:53. https://doi.org/10.1186/1476-7120-7-53

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kutty S, Rangamani S, Venkataraman J et al (2013) Reduced global longitudinal and radial strain with normal left ventricular ejection fraction late after effective repair of aortic coarctation: a CMR feature tracking study. Int J Cardiovasc Imaging 29:141–150. https://doi.org/10.1007/s10554-012-0061-1

    Article  PubMed  Google Scholar 

  39. Vigneault DM, Riele te ASJM, James CA et al (2015) Right ventricular strain by MR quantitatively identifies regional dysfunction in patients with arrhythmogenic right ventricular cardiomyopathy. J Magn Reson Imaging 43:1132–1139. https://doi.org/10.1002/jmri.25068

    Article  PubMed  PubMed Central  Google Scholar 

  40. Prati G, Vitrella G, Allocca G et al (2015) Right ventricular strain and dyssynchrony assessment in arrhythmogenic right ventricular cardiomyopathy: cardiac magnetic resonance feature-tracking study. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.115.003647

    Article  PubMed  Google Scholar 

  41. Marcus FI, McKenna WJ, Sherrill D et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J 31(7):806–814

    Article  PubMed  PubMed Central  Google Scholar 

  42. Teske AJ, Cox MGPJ, Riele te ASJM et al (2012) Early detection of regional functional abnormalities in asymptomatic ARVD/C gene carriers. J Am Soc Echocardiogr 25:997–1006. https://doi.org/10.1016/j.echo.2012.05.008

    Article  PubMed  Google Scholar 

  43. Teske AJ, Cox MG, De Boeck BW et al (2009) Echocardiographic tissue deformation imaging quantifies abnormal regional right ventricular function in arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Soc Echocardiogr 22:920–927. https://doi.org/10.1016/j.echo.2009.05.014

    Article  PubMed  Google Scholar 

  44. Aneq M, Engvall J, Brudin L, Nylander E (2012) Evaluation of right and left ventricular function using speckle tracking echocardiography in patients with arrhythmogenic right ventricular cardiomyopathy and their first degree relatives. Cardiovasc Ultrasound 10:37. https://doi.org/10.1186/1476-7120-10-37

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tessa C, Del Meglio J, Ghidini Ottonelli A et al (2012) Evaluation of Brugada syndrome by cardiac magnetic resonance. Int J Cardiovasc Imaging 28:1961–1970. https://doi.org/10.1007/s10554-012-0009-5

    Article  PubMed  Google Scholar 

  46. Murata K, Ueyama T, Tanaka T et al (2011) Right ventricular dysfunction in patients with Brugada-like electrocardiography: a two dimensional strain imaging study. Cardiovasc Ultrasound 9:30. https://doi.org/10.1186/1476-7120-9-30

    Article  PubMed  PubMed Central  Google Scholar 

  47. Buckert D, Cieslik M, Tibi R et al (2017) Longitudinal strain assessed by cardiac magnetic resonance correlates to hemodynamic findings in patients with severe aortic stenosis and predicts positive remodeling after transcatheter aortic valve replacement. Clin Res Cardiol 107:20–29. https://doi.org/10.1007/s00392-017-1153-7

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sen-Chowdhry S, Syrris P, Prasad SK et al (2008) Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol 52:2175–2187. https://doi.org/10.1016/j.jacc.2008.09.019

    Article  PubMed  Google Scholar 

  49. Jain A, Shehata ML, Stuber M et al (2010) Prevalence of left ventricular regional dysfunction in arrhythmogenic right ventricular dysplasia: a tagged MRI study. Circ Cardiovasc Imaging 3:290–297. https://doi.org/10.1161/CIRCIMAGING.109.911313

    Article  PubMed  PubMed Central  Google Scholar 

  50. Riele te ASJM, James CA, Philips B et al (2013) Mutation-positive arrhythmogenic right ventricular dysplasia/cardiomyopathy: the triangle of dysplasia displaced. J Cardiovasc Electrophysiol 24:1311–1320. https://doi.org/10.1111/jce.12222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WH, ESB and PH initiated the study concept. PH is the corresponding author of the manuscript. PH and HF participated in the myocardial strain analysis. PH and CS participated in the statistical analysis and PH and CS drafted the manuscript. WH, ESB, MP, HF, MK and PS contributed valuable comments and formulations. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Philipp Heermann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Institutional Review Board approval was obtained. The current study obtained approval and consent from the local ethics committee (ethics commission of the medical association Westfalen-Lippe and the medical faculty of the Westfälische-Wilhelms-University (WWU) Muenster; reference number: 2013-632-f-N).

Informed consent

Written informed consent was obtained from all subjects (patients) prior to their inclusion in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heermann, P., Fritsch, H., Koopmann, M. et al. Biventricular myocardial strain analysis using cardiac magnetic resonance feature tracking (CMR-FT) in patients with distinct types of right ventricular diseases comparing arrhythmogenic right ventricular cardiomyopathy (ARVC), right ventricular outflow-tract tachycardia (RVOT-VT), and Brugada syndrome (BrS). Clin Res Cardiol 108, 1147–1162 (2019). https://doi.org/10.1007/s00392-019-01450-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-019-01450-w

Keywords

Navigation