Skip to main content
Log in

Stress T1-mapping cardiovascular magnetic resonance imaging and inducible myocardial ischemia

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Alterations in native myocardial T1 under vasodilation stress (“T1 reactivity”) were recently proposed as a non-contrast cardiovascular magnetic resonance (CMR) method to detect myocardial ischemia. This study evaluated the performance of a segmental, truly non-contrast stress T1 mapping CMR approach to detect inducible ischemia.

Methods and results

One-hundred patients with suspected/known coronary artery disease underwent CMR at 3.0 or 1.5 T. T1 mapping was performed using the 5s(3s)3s-modified look-locker inversion-recovery (MOLLI) sequence at rest and under regadenoson stress. We defined T1 reactivity as the change in native T1 from rest to stress (1) in the 16-segment AHA model independent from perfusion images and (2) in focal regions of interest that were copied from perfusion images to T1 maps. We compared T1 reactivity between segments/regions with inducible ischemia, scar, and remote myocardium for both approaches. Segmental T1 reactivity was significantly lower in segments including inducible ischemia [− 1.15 (95% CI, − 2.16 to − 0.14)%] compared to remote segments [2.49 (95% CI, 1.87 to 3.11)%; p < 0.001]. Focal T1 reactivity was also significantly lower [− 2.65 (95% CI, − 3.84 to − 1.46)%] in regions with stress-perfusion defects compared to remote regions [4.72 (95% CI, 3.90 to 5.54)%; p < 0.001]. However, the performance of segmental T1 reactivity to depict inducible ischemia was significantly inferior compared to the focal approach (AUCs 0.68 versus 0.85; p < 0.0001).

Conclusions

Myocardium with inducible ischemia is characterized by the absence of significant T1 reactivity, but a clinically applicable approach for truly non-contrast stress T1 mapping remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rieber J, Huber A, Erhard I, Mueller S, Schweyer M, Koenig A, Schiele TM, Theisen K, Siebert U, Schoenberg SO, Reiser M, Klauss V (2006) Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J 27(12):1465–1471. https://doi.org/10.1093/eurheartj/ehl039

    Article  PubMed  Google Scholar 

  2. Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T, Di Mario C, Ferreira JR, Gersh BJ, Gitt AK, Hulot JS, Marx N, Opie LH, Pfisterer M, Prescott E, Ruschitzka F, Sabate M, Senior R, Taggart DP, van der Wall EE, Vrints CJ, Guidelines ESCCfP, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Document R, Knuuti J, Valgimigli M, Bueno H, Claeys MJ, Donner-Banzhoff N, Erol C, Frank H, Funck-Brentano C, Gaemperli O, Gonzalez-Juanatey JR, Hamilos M, Hasdai D, Husted S, James SK, Kervinen K, Kolh P, Kristensen SD, Lancellotti P, Maggioni AP, Piepoli MF, Pries AR, Romeo F, Ryden L, Simoons ML, Sirnes PA, Steg PG, Timmis A, Wijns W, Windecker S, Yildirir A, Zamorano JL (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003. https://doi.org/10.1093/eurheartj/eht296

    Article  Google Scholar 

  3. Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel E, Rezavi R, Redwood S, Plein S (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57(1):70–75. https://doi.org/10.1016/j.jacc.2010.09.019

    Article  PubMed  Google Scholar 

  4. Manka R, Wissmann L, Gebker R, Jogiya R, Motwani M, Frick M, Reinartz S, Schnackenburg B, Niemann M, Gotschy A, Kuhl C, Nagel E, Fleck E, Marx N, Luescher TF, Plein S, Kozerke S (2015) Multicenter evaluation of dynamic three-dimensional magnetic resonance myocardial perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve. Circ Cardiovasc Imaging 8:5. https://doi.org/10.1161/CIRCIMAGING.114.003061

    Article  Google Scholar 

  5. Shah R, Heydari B, Coelho-Filho O, Murthy VL, Abbasi S, Feng JH, Pencina M, Neilan TG, Meadows JL, Francis S, Blankstein R, Steigner M, di Carli M, Jerosch-Herold M, Kwong RY (2013) Stress cardiac magnetic resonance imaging provides effective cardiac risk reclassification in patients with known or suspected stable coronary artery disease. Circulation 128(6):605–614. https://doi.org/10.1161/CIRCULATIONAHA.113.001430

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vincenti G, Masci PG, Monney P, Rutz T, Hugelshofer S, Gaxherri M, Muller O, Iglesias JF, Eeckhout E, Lorenzoni V, Pellaton C, Sierro C, Schwitter J (2017) Stress perfusion CMR in patients with known and suspected CAD: prognostic value and optimal ischemic threshold for revascularization. JACC Cardiovasc Imaging 10(5):526–537. https://doi.org/10.1016/j.jcmg.2017.02.006

    Article  PubMed  Google Scholar 

  7. Hendel RC, Friedrich MG, Schulz-Menger J, Zemmrich C, Bengel F, Berman DS, Camici PG, Flamm SD, Le Guludec D, Kim R, Lombardi M, Mahmarian J, Sechtem U, Nagel E (2016) CMR first-pass perfusion for suspected inducible myocardial ischemia. JACC Cardiovasc Imaging 9(11):1338–1348. https://doi.org/10.1016/j.jcmg.2016.09.010

    Article  PubMed  Google Scholar 

  8. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379(9814):453–460. https://doi.org/10.1016/S0140-6736(11)61335-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, Dill T, Larsson HB, Flamm SD, Marquardt M, Johansson L (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29(4):480–489. https://doi.org/10.1093/eurheartj/ehm617

    Article  PubMed  Google Scholar 

  10. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, Schonberg SO, Debl K, Strohm O, Ahlstrom H, Dill T, Hoebel N, Simor T, investigators M-I (2012) Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: the secondary endpoints of the multicenter multivendor MR-IMPACT II (magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial). J Cardiovasc Magn Reson 14:61. https://doi.org/10.1186/1532-429X-14-61

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB, International Society for Magnetic Resonance in M (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16(7):564–570. https://doi.org/10.1016/S1474-4422(17)30158-8

    Article  PubMed  Google Scholar 

  12. Liu A, Wijesurendra RS, Francis JM, Robson MD, Neubauer S, Piechnik SK, Ferreira VM (2016) Adenosine stress and rest T1 mapping can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents. JACC Cardiovasc Imaging 9(1):27–36. https://doi.org/10.1016/j.jcmg.2015.08.018

    Article  PubMed  PubMed Central  Google Scholar 

  13. Judd RM, Levy BI (1991) Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ Res 68(1):217–225

    Article  CAS  PubMed  Google Scholar 

  14. McCommis KS, Zhang H, Goldstein TA, Misselwitz B, Abendschein DR, Gropler RJ, Zheng J (2009) Myocardial blood volume is associated with myocardial oxygen consumption: an experimental study with cardiac magnetic resonance in a canine model. JACC Cardiovasc Imaging 2(11):1313–1320. https://doi.org/10.1016/j.jcmg.2009.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wacker CM, Bauer WR (2003) Myocardial microcirculation in humans—new approaches using MRI. Herz 28(2):74–81. https://doi.org/10.1007/s00059-003-2451-6

    Article  PubMed  Google Scholar 

  16. Piechnik SK, Neubauer S, Ferreira VM (2017) State-of-the-art review: stress T1 mapping-technical considerations, pitfalls and emerging clinical applications. MAGMA. https://doi.org/10.1007/s10334-017-0649-5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuijpers D, Prakken NH, Vliegenthart R, van Dijkman PR, van der Harst P, Oudkerk M (2016) Caffeine intake inverts the effect of adenosine on myocardial perfusion during stress as measured by T1 mapping. Int J Cardiovasc Imaging 32(10):1545–1553. https://doi.org/10.1007/s10554-016-0949-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu A, Wijesurendra RS, Liu JM, Greiser A, Jerosch-Herold M, Forfar JC, Channon KM, Piechnik SK, Neubauer S, Kharbanda RK, Ferreira VM (2018) Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. J Am Coll Cardiol 71(9):957–968. https://doi.org/10.1016/j.jacc.2017.11.071

    Article  PubMed  PubMed Central  Google Scholar 

  19. Riffel JH, Schmucker K, Andre F, Ochs M, Hirschberg K, Schaub E, Fritz T, Mueller-Hennessen M, Giannitsis E, Katus HA, Friedrich MG (2018) Cardiovascular magnetic resonance of cardiac morphology and function: impact of different strategies of contour drawing and indexing. Clin Res Cardiol. https://doi.org/10.1007/s00392-018-1371-7

    Article  PubMed  Google Scholar 

  20. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, Plein S, Nagel E (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15:35. https://doi.org/10.1186/1532-429X-15-35

    Article  PubMed  PubMed Central  Google Scholar 

  21. Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, Mascherbauer J, Nezafat R, Salerno M, Schelbert EB, Taylor AJ, Thompson R, Ugander M, van Heeswijk RB, Friedrich MG (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19(1):75. https://doi.org/10.1186/s12968-017-0389-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buckert D, Dewes P, Walcher T, Rottbauer W, Bernhardt P (2013) Intermediate-term prognostic value of reversible perfusion deficit diagnosed by adenosine CMR: a prospective follow-up study in a consecutive patient population. JACC Cardiovasc Imaging 6(1):56–63. https://doi.org/10.1016/j.jcmg.2012.08.011

    Article  PubMed  Google Scholar 

  23. Buckert D, Kelle S, Buss S, Korosoglou G, Gebker R, Birkemeyer R, Rottbauer W, Katus H, Pieske B, Bernhardt P (2017) Left ventricular ejection fraction and presence of myocardial necrosis assessed by cardiac magnetic resonance imaging correctly risk stratify patients with stable coronary artery disease: a multi-center all-comers trial. Clin Res Cardiol 106(3):219–229. https://doi.org/10.1007/s00392-016-1042-5

    Article  PubMed  Google Scholar 

  24. Greulich S, Kindermann I, Schumm J, Perne A, Birkmeier S, Grun S, Ong P, Schaufele T, Klingel K, Schneider S, Kandolf R, Bohm M, Sechtem U, Mahrholdt H (2016) Predictors of outcome in patients with parvovirus B19 positive endomyocardial biopsy. Clin Res Cardiol 105(1):37–52. https://doi.org/10.1007/s00392-015-0884-6

    Article  PubMed  Google Scholar 

  25. Grun S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, Kispert EM, Hill S, Ong P, Klingel K, Kandolf R, Sechtem U, Mahrholdt H (2012) Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59(18):1604–1615. https://doi.org/10.1016/j.jacc.2012.01.007

    Article  PubMed  Google Scholar 

  26. Kali A, Choi EY, Sharif B, Kim YJ, Bi X, Spottiswoode B, Cokic I, Yang HJ, Tighiouart M, Conte AH, Li D, Berman DS, Choi BW, Chang HJ, Dharmakumar R (2015) Native T1 mapping by 3-T CMR imaging for characterization of chronic myocardial infarctions. JACC Cardiovasc Imaging 8(9):1019–1030. https://doi.org/10.1016/j.jcmg.2015.04.018

    Article  PubMed  Google Scholar 

  27. Liu D, Borlotti A, Viliani D, Jerosch-Herold M, Alkhalil M, De Maria GL, Fahrni G, Dawkins S, Wijesurendra R, Francis J, Ferreira V, Piechnik S, Robson MD, Banning A, Choudhury R, Neubauer S, Channon K, Kharbanda R, Dall’Armellina E (2017) CMR native T1 mapping allows differentiation of reversible versus irreversible myocardial damage in ST-segment-elevation myocardial infarction: an OxAMI study (Oxford acute myocardial infarction). Circ Cardiovasc Imaging 10:8. https://doi.org/10.1161/CIRCIMAGING.116.005986

    Article  Google Scholar 

  28. Tahir E, Sinn M, Bohnen S, Avanesov M, Saring D, Stehning C, Schnackenburg B, Eulenburg C, Wien J, Radunski UK, Blankenberg S, Adam G, Higgins CB, Saeed M, Muellerleile K, Lund GK (2017) Acute versus chronic myocardial infarction: diagnostic accuracy of quantitative native T1 and T2 mapping versus assessment of edema on standard T2-weighted cardiovascular MR images for differentiation. Radiology 285(1):83–91. https://doi.org/10.1148/radiol.2017162338

    Article  PubMed  Google Scholar 

  29. Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, Piechnik SK, Whelan CJ, Herrey AS, Gillmore JD, Lachmann HJ, Wechalekar AD, Hawkins PN, Moon JC (2015) T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 36(4):244–251. https://doi.org/10.1093/eurheartj/ehu444

    Article  PubMed  Google Scholar 

  30. Bietenbeck M, Florian A, Shomanova Z, Klingel K, Yilmaz A (2017) Novel CMR techniques enable detection of even mild autoimmune myocarditis in a patient with systemic lupus erythematosus. Clin Res Cardiol 106(7):560–563. https://doi.org/10.1007/s00392-017-1100-7

    Article  PubMed  Google Scholar 

  31. Bohnen S, Radunski UK, Lund GK, Ojeda F, Looft Y, Senel M, Radziwolek L, Avanesov M, Tahir E, Stehning C, Schnackenburg B, Adam G, Blankenberg S, Muellerleile K (2017) Tissue characterization by T1 and T2 mapping cardiovascular magnetic resonance imaging to monitor myocardial inflammation in healing myocarditis. Eur Heart J Cardiovasc Imaging 18(7):744–751. https://doi.org/10.1093/ehjci/jex007

    Article  CAS  PubMed  Google Scholar 

  32. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, Holloway C, Choudhury RP, Kardos A, Robson MD, Friedrich MG, Neubauer S (2013) T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 6(10):1048–1058. https://doi.org/10.1016/j.jcmg.2013.03.008

    Article  PubMed  Google Scholar 

  33. Radunski UK, Lund GK, Saring D, Bohnen S, Stehning C, Schnackenburg B, Avanesov M, Tahir E, Adam G, Blankenberg S, Muellerleile K (2017) T1 and T2 mapping cardiovascular magnetic resonance imaging techniques reveal unapparent myocardial injury in patients with myocarditis. Clin Res Cardiol 106(1):10–17. https://doi.org/10.1007/s00392-016-1018-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Bohnen.

Ethics declarations

Conflict of interest

Dr. Stehning is an employee of Philips Research, Hamburg, Germany. The other authors report no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohnen, S., Prüßner, L., Vettorazzi, E. et al. Stress T1-mapping cardiovascular magnetic resonance imaging and inducible myocardial ischemia. Clin Res Cardiol 108, 909–920 (2019). https://doi.org/10.1007/s00392-019-01421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-019-01421-1

Keywords

Navigation