Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis

Abstract

Mycobacterium tuberculosis remains a leading cause of death worldwide, especially among individuals infected with HIV1. Whereas phylogenetic analysis has revealed M. tuberculosis spread throughout history2,3,4,5 and in local outbreaks6,7,8, much less is understood about its dissemination within the body. Here we report genomic analysis of 2,693 samples collected post mortem from lung and extrapulmonary biopsies of 44 subjects in KwaZulu-Natal, South Africa, who received minimal antitubercular treatment and most of whom were HIV seropositive. We found that purifying selection occurred within individual patients, without the need for patient-to-patient transmission. Despite negative selection, mycobacteria diversified within individuals to form sublineages that co-existed for years. These sublineages, as well as distinct strains from mixed infections, were differentially distributed throughout the lung, suggesting temporary barriers to pathogen migration. As a consequence, samples taken from the upper airway often captured only a fraction of the population diversity, challenging current methods of outbreak tracing and resistance diagnostics. Phylogenetic analysis indicated that dissemination from the lungs to extrapulmonary sites was as frequent as between lung sites, supporting the idea of similar migration routes within and between organs, at least in subjects with HIV. Genomic diversity therefore provides a record of pathogen diversification and repeated dissemination across the body.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postmortem analysis of 2,693 M. tuberculosis samples from 329 sites across the bodies of 44 subjects.
Figure 2: Genomic sequencing reveals variation due to mixed infection and de novo mutation.
Figure 3: M. tuberculosis diversity within the lungs is spatially structured.
Figure 4: M. tuberculosis dissemination within lungs, between lungs and between organs follows similar dynamics.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

References

  1. World Health Organization. Global tuberculosis report 2015 1–204 (World Health Organization, Geneva, Switzerland, 2015).

  2. Cohen, K.A. et al. Evolution of extensively drug-resistant tuberculosis over four decades: whole-genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med. 12, e1001880 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Comas, I. et al. Out-of-Africa migration and neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kay, G.L. et al. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat. Commun. 6, 6717 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Bos, K.I. et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gardy, J.L. et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N. Engl. J. Med. 364, 730–739 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Walker, T.M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13, 137–146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bryant, J.M. et al. Inferring patient-to-patient transmission of Mycobacterium tuberculosis from whole-genome sequencing data. BMC Infect. Dis. 13, 110 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jorth, P. et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe 18, 307–319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lieberman, T.D. et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 43, 1275–1280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pérez-Lago, L. et al. Whole-genome sequencing analysis of intrapatient microevolution in Mycobacterium tuberculosis: potential impact on the inference of tuberculosis transmission. J. Infect. Dis. 209, 98–108 (2014).

    Article  PubMed  Google Scholar 

  12. Zetola, N.M. et al. Clinical outcomes among persons with pulmonary tuberculosis caused by Mycobacterium tuberculosis isolates with phenotypic heterogeneity in results of drug-susceptibility tests. J. Infect. Dis. 209, 1754–1763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Black, P.A. et al. Whole-genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates. BMC Genomics 16, 857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, G. et al. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J. Infect. Dis. 206, 1724–1733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen, T. et al. Mixed-strain Mycobacterium tuberculosis infections and the implications for tuberculosis treatment and control. Clin. Microbiol. Rev. 25, 708–719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Colijn, C., Cohen, T., Ganesh, A. & Murray, M. Spontaneous emergence of multiple drug resistance in tuberculosis before and during therapy. PLoS One 6, e18327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prideaux, B. et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med. 21, 1223–1227 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mankiewicz, E. & Liivak, M. Phage types of Mycobacterium tuberculosis in cultures isolated from Eskimo patients. Am. Rev. Respir. Dis. 111, 307–312 (1975).

    CAS  PubMed  Google Scholar 

  19. Warren, R.M. et al. Patients with active tuberculosis often have different strains in the same sputum specimen. Am. J. Respir. Crit. Care Med. 169, 610–614 (2004).

    Article  PubMed  Google Scholar 

  20. Ford, C.B. et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pepperell, C.S. et al. The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog. 9, e1003543 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, R.S. et al. Population genomics of Mycobacterium tuberculosis in the Inuit. Proc. Natl. Acad. Sci. USA 112, 13609–13614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tiemersma, E.W., van der Werf, M.J., Borgdorff, M.W., Williams, B.G. & Nagelkerke, N.J.D. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV-negative patients: a systematic review. PLoS One 6, e17601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eldholm, V. et al. Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis. eLife 5, 306 (2016).

    Article  Google Scholar 

  25. Lin, P.L. et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20, 75–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. García de Viedma, D., Marín, M., Ruiz Serrano, M.J., Alcalá, L. & Bouza, E. Polyclonal and compartmentalized infection by Mycobacterium tuberculosis in patients with both respiratory and extra-respiratory involvement. J. Infect. Dis. 187, 695–699 (2003).

    Article  PubMed  Google Scholar 

  27. Liu, Q. et al. Within-patient microevolution of Mycobacterium tuberculosis correlates with heterogeneous responses to treatment. Sci. Rep. 5, 17507 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ford, C. et al. Mycobacterium tuberculosis—heterogeneity revealed through whole-genome sequencing. Tuberculosis (Edinb.) 92, 194–201 (2012).

    Article  CAS  Google Scholar 

  29. Turajlic, S. & Swanton, C. Metastasis as an evolutionary process. Science 352, 169–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Krishnan, N., Robertson, B.D. & Thwaites, G. The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis. Tuberculosis (Edinb.) 90, 361–366 (2010).

    Article  CAS  Google Scholar 

  31. McMurray, D.N. Hematogenous reseeding of the lung in low-dose, aerosol-infected guinea pigs: unique features of the host–pathogen interface in secondary tubercles. Tuberculosis (Edinb.) 83, 131–134 (2003).

    Article  Google Scholar 

  32. Ssengooba, W., de Jong, B.C., Joloba, M.L., Cobelens, F.G. & Meehan, C.J. Whole-genome sequencing reveals mycobacterial microevolution among concurrent isolates from sputum and blood in HIV-infected TB patients. BMC Infect. Dis. 16, 371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Worby, C.J., Lipsitch, M. & Hanage, W.P. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic-distance data. PLoS Comput. Biol. 10, e1003549 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Didelot, X., Gardy, J. & Colijn, C. Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol. Biol. Evol. 31, 1869–1879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paterson, G.K. et al. Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission. Nat. Commun. 6, 6560 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Guerra-Assunção, J.A. et al. Large-scale whole-genome sequencing of M. tuberculosis provides insights into transmission in a high-prevalence area. eLife 4, e05166 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  37. Walker, T.M. et al. Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007-12, with whole-pathogen genome sequences: an observational study. Lancet Respir. Med. 2, 285–292 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hatherell, H.-A. et al. Interpreting whole-genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med. 14, 21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eldholm, V. et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol. 15, 490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petroff, S.A. A new and rapid method for the isolation and cultivation of tubercle bacilli directly from the sputum and feces. J. Exp. Med. 21, 38–42 (1915).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cohn, M.L., Waggoner, R.F. & McClatchy, J.K. The 7H11 medium for the cultivation of mycobacteria. Am. Rev. Respir. Dis. 98, 295–296 (1968).

    CAS  PubMed  Google Scholar 

  42. Somerville, W., Thibert, L., Schwartzman, K. & Behr, M.A. Extraction of Mycobacterium tuberculosis DNA: a question of containment. J. Clin. Microbiol. 43, 2996–2997 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS One 10, e0128036 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Lieberman, T.D. et al. Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nat. Genet. 46, 82–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Middlebrook, G., Dubos, R.J. & Pierce, C. Virulence and morphological characteristics of mammalian tubercle bacilli. J. Exp. Med. 86, 175–184 (1947).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Casali, N. et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 22, 735–745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Coll, F. et al. Rapid determination of antituberculosis drug resistance from whole-genome sequences. Genome Med. 7, 51 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cleary, B. et al. Detection of low-abundance bacterial strains in metagenomic data sets by eigengenome partitioning. Nat. Biotechnol. 33, 1053–1060 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coll, F. et al. A robust SNP barcode for typing Mycobacterium tuberculosis–complex strains. Nat. Commun. 5, 4812 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Jiao, W., Vembu, S., Deshwar, A.G., Stein, L. & Morris, Q. Inferring clonal evolution of tumors from single-nucleotide somatic mutations. BMC Bioinformatics 15, 35 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fischer, A., Vázquez-García, I., Illingworth, C.J.R. & Mustonen, V. High-definition reconstruction of clonal composition in cancer. Cell Rep. 7, 1740–1752 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Maziya, Z. Magcaba, N. Xengxe and M.J. Khumalo for their assistance with enrollment and postmortem analyses, the Edendale Hospital management and the KwaZulu-Natal Department of Health. We are grateful to M. Baym and members of the Kishony lab for helpful discussions, C. Duvallet for comments on the manuscript, and H. Chung for discussions of spatial diversity and comments on the manuscript. We thank the team at Macrogen Clinical Laboratories for their help with Illumina sequencing and I. Comas (University of Valencia) for providing the M. tuberculosis reference sequence. This work was funded in part by US National Institutes of Health grants DP2 OD006663 (T.C.) and R01-GM081617 (R.K.), F. Hoffman LaRoche, Inc. (R.K.), and European Research Council FP7 ERC grant 281891 (R.K.).

Author information

Authors and Affiliations

Authors

Contributions

T.C. and D.W. conceived and coordinated the study; T.D.L., D.W., T.C. and R.K. designed the study; D.W. identified eligible decedents and conducted postmortem biopsies; R.M. and P.M. processed and cultured samples, performed antibiotic sensitivity testing and extracted DNA; T.D.L. and L.L.X. prepared genomic libraries; T.D.L. and R.K. analyzed genomic data; T.D.L., D.W., T.C. and R.K. interpreted results and wrote the manuscript.

Corresponding authors

Correspondence to Ted Cohen or Roy Kishony.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–3 and Supplementary Note (PDF 1595 kb)

Supplementary Table 4

All de novo mutations detected in M. tuberculosis samples grown from autopsy specimens from 44 subjects. (CSV 233 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lieberman, T., Wilson, D., Misra, R. et al. Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat Med 22, 1470–1474 (2016). https://doi.org/10.1038/nm.4205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4205

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology