Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer

An Erratum to this article was published on 06 June 2017

An Erratum to this article was published on 07 April 2017

This article has been updated

Abstract

Triple-negative breast cancers (TNBCs) have poor prognosis and lack targeted therapies. Here we identified increased copy number and expression of the PIM1 proto-oncogene in genomic data sets of patients with TNBC. TNBC cells, but not nonmalignant mammary epithelial cells, were dependent on PIM1 for proliferation and protection from apoptosis. PIM1 knockdown reduced expression of the anti-apoptotic factor BCL2, and dynamic BH3 profiling of apoptotic priming revealed that PIM1 prevents mitochondrial-mediated apoptosis in TNBC cell lines. In TNBC tumors and their cellular models, PIM1 expression was associated with several transcriptional signatures involving the transcription factor MYC, and PIM1 depletion in TNBC cell lines decreased, in a MYC-dependent manner, cell population growth and expression of the MYC target gene MCL1. Treatment with the pan–PIM kinase inhibitor AZD1208 impaired the growth of both cell line and patient-derived xenografts and sensitized them to standard-of-care chemotherapy. This work identifies PIM1 as a malignant-cell-selective target in TNBC and the potential use of PIM1 inhibitors for sensitizing TNBC to chemotherapy-induced apoptotic cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIM1 gene expression is upregulated in TNBC and associated with increased PIM1 gene copy number.
Figure 2: PIM1 supports cell population growth and clonogenic survival of TNBC cells.
Figure 3: PIM1 inhibits activation of mitochondrial-mediated apoptosis in TNBC cells.
Figure 4: PIM1 functions through the MYC activation pathway.
Figure 5: The pan–PIM kinase inhibitor AZD1208 impairs clonogenic survival and reduces tumor growth in in vivo xenograft models of TNBC.
Figure 6: The pan–PIM kinase inhibitor AZD1208 enhances responses to chemotherapy in TNBC cells and xenografts.

Similar content being viewed by others

Nadia Harbeck, Frédérique Penault-Llorca, … Fatima Cardoso

Accession codes

Primary accessions

ArrayExpress

Change history

  • 26 January 2017

    In the version of this article initially published, the western blot in Figure 2a for the BT474 cell line was incorrect. In addition, one of the accession codes for gene expression data for the Guy's Hospital TNBC-enriched cohort was incorrect. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Reis-Filho, J.S. & Tutt, A.N. Triple-negative tumors: a critical review. Histopathology 52, 108–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Symmans, W.F. et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J. Clin. Oncol. 25, 4414–4422 (2007).

    Article  PubMed  Google Scholar 

  3. Masuda, H. et al. Differential response to neoadjuvant chemotherapy among seven triple-negative breast cancer molecular subtypes. Clin. Cancer Res. 19, 5533–5540 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Balko, J.M. et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 4, 232–245 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Labisso, W.L. et al. MYC directs transcription of MCL1 and EIF4E genes to control sensitivity of gastric cancer cells toward HDAC inhibitors. Cell Cycle 11, 1593–1602 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Andre, F. et al. Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin. Cancer Res. 15, 441–451 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Bergamaschi, A. et al. Distinct patterns of DNA copy-number alteration are associated with different clinicopathological features and gene expression subtypes of breast cancer. Genes Chromosom. Cancer 45, 1033–1040 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Turner, N. et al. Integrative molecular profiling of triple-negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29, 2013–2023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nawijn, M.C., Alendar, A. & Berns, A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat. Rev. Cancer 11, 23–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, J. et al. Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene 29, 2477–2487 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keeton, E.K. et al. AZD1208, a potent and selective pan–Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood 123, 905–913 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laird, P.W. et al. In vivo analysis of Pim1 deficiency. Nucleic Acids Res. 21, 4750–4755 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Magnuson, N.S., Wang, Z., Ding, G. & Reeves, R. Why target PIM1 for cancer diagnosis and treatment? Future Oncol. 6, 1461–1478 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Narlik-Grassow, M., Blanco-Aparicio, C. & Carnero, A. The PIM family of serine–threonine kinases in cancer. Med. Res. Rev. 34, 136–159 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Aceto, N. et al. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive-feedback signaling loop. Nat. Med. 18, 529–537 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Speers, C. et al. Identification of novel kinase targets for the treatment of estrogen-receptor-negative breast cancer. Clin. Cancer Res. 15, 6327–6340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lehmann, B.D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Rinaldis, E. et al. Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control. BMC Genomics 14, 643 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gazinska, P. et al. Comparison of basal-like triple-negative breast cancer defined by morphology, immunohistochemistry and transcriptional profiles. Mod. Pathol. 26, 955–966 (2013).

    Article  PubMed  Google Scholar 

  20. The Cancer Genome Atlas. Comprehensive molecular portraits of human breast tumors. Nature 490, 61–70 (2012).

  21. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumors reveals novel subgroups. Nature 486, 346–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parker, J.S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Neve, R.M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Canbay, E. Erb-B2 homodimerization inhibits MUC1 transcription in cultured human mammary epithelial cells. Cell Biol. Int. 27, 477–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Aho, T.L. et al. Pim1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 571, 43–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Lilly, M., Sandholm, J., Cooper, J.J., Koskinen, P.J. & Kraft, A. The PIM1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a BCL-2-dependent pathway. Oncogene 18, 4022–4031 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Juin, P., Geneste, O., Gautier, F., Depil, S. & Campone, M. Decoding and unlocking the BCL-2 dependency of cancer cells. Nat. Rev. Cancer 13, 455–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Montero, J. et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 160, 977–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verbeek, S. et al. Mice bearing the Eμ-Myc and Eμ-Pim1 transgenes develop pre-B-cell leukemia prenatally. Mol. Cell. Biol. 11, 1176–1179 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zippo, A., De Robertis, A., Serafini, R. & Oliviero, S. PIM1-dependent phosphorylation of histone H3 at Ser10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat. Cell Biol. 9, 932–944 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Noguchi, K. et al. Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J. Biol. Chem. 274, 32580–32587 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, X. et al. Phosphorylation regulates c-Myc's oncogenic activity in the mammary gland. Cancer Res. 71, 925–936 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chandriani, S. et al. A core MYC gene expression signature is prominent in basal-like breast cancer but only partially overlaps the core serum response. PLoS One 4, e6693 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Horiuchi, D. et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J. Exp. Med. 209, 679–696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grigoriadis, A. et al. Molecular characterization of cell line models for triple-negative breast cancers. BMC Genomics 13, 619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morishita, D., Katayama, R., Sekimizu, K., Tsuruo, T. & Fujita, N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res. 68, 5076–5085 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Miura, K. et al. Involvement of EphA2-mediated tyrosine phosphorylation of Shp2 in Shp2-regulated activation of extracellular-signal-regulated kinase. Oncogene 32, 5292–5301 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Hudis, C.A. & Gianni, L. Triple-negative breast cancer: an unmet medical need. Oncologist 16 (Suppl. 1), 1–11 (2011).

    Article  PubMed  Google Scholar 

  40. Kirschner, A.N. et al. PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer. J. Natl. Cancer Inst. 107, dju407 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Turner, N.C. & Reis-Filho, J.S. Tackling the diversity of triple-negative breast cancer. Clin. Cancer Res. 19, 6380–6388 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Morton, J.P. & Sansom, O.J. MYC-y mice: from tumor initiation to therapeutic targeting of endogenous MYC. Mol. Oncol. 7, 248–258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horiuchi, D. et al. PIM kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat. Med. http://dx.doi.org/10.1038/nm.4213 (2016).

  44. Petrocca, F. et al. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell 24, 182–196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garcia, P.D. et al. Pan–PIM kinase inhibition provides a novel therapy for treating hematologic cancers. Clin. Cancer Res. 20, 1834–1845 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Malinen, M. et al. Proto-oncogene PIM1 is a novel estrogen receptor target associating with high-grade breast tumors. Mol. Cell. Endocrinol. 365, 270–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Raab, M.S. et al. Phase 1 study of the novel pan–PIM kinase inhibitor LGH447 in patients with relapsed or refractory multiple myeloma. in 55th ASH Annual meeting and exposition (New Orleans, LA, 2013).

  48. McEachern, K.A. et al. Preclinical and clinical pharmacodynamics of pan-PIM inhibition by AZD1208 in acute myeloid leukemia: assessment of PIM isoform dependency for BAD and 4EBP1 phosphorylation. in 56th ASH Annual meeting and exposition (San Francisco, CA, 2014).

  49. Mori, S. et al. Utilization of pathway signatures to reveal distinct types of B lymphoma in the Eμ-myc model and human diffuse large-B-cell lymphoma. Cancer Res. 68, 8525–8534 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bild, A.H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Zeller, K.I., Jegga, A.G., Aronow, B.J., O'Donnell, K.A. & Dang, C.V. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 4, R69 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  52. O'Donnell, K.A. et al. Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol. Cell. Biol. 26, 2373–2386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandez, P.C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, Y.H. et al. Combined microarray analysis of small-cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification. Oncogene 25, 130–138 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Lastowska, M. et al. Comprehensive genetic and histopathologic study reveals three types of neuroblastoma tumors. J. Clin. Oncol. 19, 3080–3090 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J.S. et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat. Genet. 36, 1306–1311 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Menssen, A. & Hermeking, H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc. Natl. Acad. Sci. USA 99, 6274–6279 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schlosser, I. et al. Dissection of transcriptional programs in response to serum and c-Myc in a human B cell line. Oncogene 24, 520–524 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Schuhmacher, M. et al. The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res. 29, 397–406 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, D., Cozma, D., Park, A. & Thomas-Tikhonenko, A. Functional validation of genes implicated in lymphomagenesis: an in vivo selection assay using a Myc-induced B cell tumor. Ann. NY Acad. Sci. 1059, 145–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Hammond, M.E. et al. American Society of Clinical Oncology–College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Van Loo, P. et al. Allele-specific copy-number analysis of tumors. Proc. Natl. Acad. Sci. USA 107, 16910–16915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rasmussen, M. et al. Allele-specific copy-number analysis of tumor samples with aneuploidy and tumor heterogeneity. Genome Biol. 12, R108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meerbrey, K.L. et al. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc. Natl. Acad. Sci. USA 108, 3665–3670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Franken, N.A., Rodermond, H.M., Stap, J., Haveman, J. & van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Breast Cancer Now funding (A.N.T.) at King's College London and the Institute of Cancer Research London, the National Institute for Health Research Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London, the US National Institutes of Health grant P30 CA008748 (M.S.) and the Breast Cancer Research Foundation (M.S.). The PDX studies were supported by a 'GHD-pink' research support via the FERO Foundation (V.S.). Patient samples and data were provided by King's Health Partners Cancer Biobank, London, UK, which is supported by the Experimental Cancer Medicine Centre at King's College London and the Department of Health via the National Institute for Health Research comprehensive Biomedical Research Centre award. We thank S. Swift, S. Utting and M. Ferrao for technical and administrative assistance, AstraZeneca for providing AZD1208, D. Huszar (AstraZeneca) for providing information on the use of AZD1208, H. Mirza (King's College London) for his support with the bioinformatics analysis, J. Hurst (The Institute of Cancer Research London) for helping with the NanoString nCounter PanCancer Pathway analysis, M. Dowsett (Institute of Cancer Research and Royal Marsden Hospital National Institute for Health Research comprehensive Biomedical Research Centre London) for providing staff and infrastructure support for the NanoString NCounter work, T. Tenev (Institute of Cancer Research) for providing MDA-MB-231 containing the BCL2 pTIPZ overexpression vector and the Guy's Hospital Pharmacy for providing the chemotherapeutic drugs.

Author information

Authors and Affiliations

Authors

Contributions

A.N.T., A.G., F.B.-M., S.F. and P. Marra conceived and designed the research; F.B.-M. and S.F. performed the in vitro experiments with crucial help from S.C., E.N., S.M., M. Shafat, N.P. and A.P.-R.; J.W. and J.Q. performed the bioinformatics analyses; R.M., E.F.-D., D.A.P. and L.Z. performed the cell line xenograft experiments; V.S. and A.G.-O. performed the PDX experiments; P.G., E.F.-D., L.Z. and F.N. performed IHC stainings; K.M. provided AZD1208 and expertise, and assisted in the design of in vitro and in vivo AZD1208 experiments; G.L. and P. Meier performed dynamic BH3 profiling analysis; R.B. performed the NanoString nCounter experiments; M.C.U.C. performed the statistical analysis of the gene expression analysis; P.C. and M. Scaltriti performed western blot analysis with the PIM1 NOV22-39-5 antibody, and F.B.-M. analyzed most of the results; F.B.-M. and A.N.T wrote the manuscript; A.N.T. coordinated this work; and all authors helped with data interpretation and manuscript editing.

Corresponding author

Correspondence to Andrew N Tutt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text, Figures and Tables

Supplementary Figures 1–16 and Supplementary Tables 1–3 (PDF 28936 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasó-Maristany, F., Filosto, S., Catchpole, S. et al. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat Med 22, 1303–1313 (2016). https://doi.org/10.1038/nm.4198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4198

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer