Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy

Abstract

Epigenetic reprogramming is a critical process of pathological gene induction during cardiac hypertrophy and remodeling, but the underlying regulatory mechanisms remain to be elucidated. Here we identified a heart-enriched long noncoding (lnc)RNA, named cardiac-hypertrophy-associated epigenetic regulator (Chaer), which is necessary for the development of cardiac hypertrophy. Mechanistically, Chaer directly interacts with the catalytic subunit of polycomb repressor complex 2 (PRC2). This interaction, which is mediated by a 66-mer motif in Chaer, interferes with PRC2 targeting to genomic loci, thereby inhibiting histone H3 lysine 27 methylation at the promoter regions of genes involved in cardiac hypertrophy. The interaction between Chaer and PRC2 is transiently induced after hormone or stress stimulation in a process involving mammalian target of rapamycin complex 1, and this interaction is a prerequisite for epigenetic reprogramming and induction of genes involved in hypertrophy. Inhibition of Chaer expression in the heart before, but not after, the onset of pressure overload substantially attenuates cardiac hypertrophy and dysfunction. Our study reveals that stress-induced pathological gene activation in the heart requires a previously uncharacterized lncRNA-dependent epigenetic checkpoint.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chaer regulates cardiac hypertrophy.
Figure 2: Chaer negatively regulates H3K27 trimethylation via its interaction with the catalytic subunit of PRC2.
Figure 3: Characterization of a Chaer motif that interacts with PRC2.
Figure 4: Transiently enhanced Chaer–PRC2 interaction regulates hypertrophic gene induction and targeted H3K27me3 modification.
Figure 5: mTORC1 signaling pathway mediates the EZH2–Chaer interaction after hypertrophic stimulation.
Figure 6: Chaer functions as an early checkpoint for TAC-induced hypertrophy in vivo.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Sala, V. et al. Signaling to cardiac hypertrophy: insights from human and mouse RASopathies. Mol. Med. 18, 938–947 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuwahara, K., Nishikimi, T. & Nakao, K. Transcriptional regulation of the fetal cardiac gene program. J. Pharmacol. Sci. 119, 198–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Y. Mitogen-activated protein kinases in heart development and diseases. Circulation 116, 1413–1423 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Maron, B.J. & Maron, M.S. Hypertrophic cardiomyopathy. Lancet 381, 242–255 (2013).

    Article  PubMed  Google Scholar 

  5. Joh, R.I., Palmieri, C.M., Hill, I.T. & Motamedi, M. Regulation of histone methylation by noncoding RNAs. Biochim. Biophys. Acta 1839, 1385–1394 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gould, A. Functions of mammalian Polycomb group and trithorax group–related genes. Curr. Opin. Genet. Dev. 7, 488–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Kaneda, R. et al. Genome-wide histone methylation profile for heart failure. Genes Cells 14, 69–77 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Angrisano, T. et al. Epigenetic switch at Atp2a2 and Myh7 gene promoters in pressure-overload-induced heart failure. PLoS One 9, e106024 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Papait, R. et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 110, 20164–20169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishii, N. et al. Identification of a novel noncoding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet. 51, 1087–1099 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Friedrichs, F. et al. HBEGF, SRA1 and IK: three co-segregating genes as determinants of cardiomyopathy. Genome Res. 19, 395–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burd, C.E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated noncoding RNA correlates with atherosclerosis risk. PLoS Genet. 6, e1001233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumarswamy, R. et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res. 114, 1569–1575 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, K. et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res. 114, 1377–1388 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, F., Zhou, X. & Huang, J. Long noncoding RNA–ROR mediates the reprogramming in cardiac hypertrophy. PLoS One 11, e0152767 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Viereck, J. et al. Long noncoding RNA Chast promotes cardiac remodeling. Sci. Transl. Med. 8, 326ra22 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, L. et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc. Res. 111, 56–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Peters, T. et al. Long noncoding RNA Malat-1 is dispensable during pressure-overload-induced cardiac remodeling and failure in mice. PLoS One 11, e0150236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matkovich, S.J., Edwards, J.R., Grossenheider, T.C., de Guzman Strong, C. & Dorn, G.W., II. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc. Natl. Acad. Sci. USA 111, 12264–12269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ounzain, S. et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long noncoding RNAs. Eur. Heart J. 36, 353–68a (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Grote, P. et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24, 206–214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, J.H. et al. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circ. Res. 109, 1332–1341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kurian, L. et al. Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation 131, 1278–1290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Z. & Wang, Y. Dawn of the Epi-LncRNAs: new path from Myheart. Circ. Res. 116, 235–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, L. et al. Targeted disruption of Hotair leads to homeotic transformation and gene de-repression. Cell Rep. 5, 3–12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klattenhoff, C.A. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152, 570–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, K.C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, Z. et al. The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21WAF1/CIP1 expression. PLoS One 8, e77293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, F. et al. Characterization of sucrose transporter alleles and their association with seed-yield-related traits in Brassica napus L. BMC Plant Biol. 11, 168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kallen, A.N. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Monnier, P. et al. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc. Natl. Acad. Sci. USA 110, 20693–20698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finn, R.D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    CAS  PubMed  Google Scholar 

  34. Chu, C., Qu, K., Zhong, F.L., Artandi, S.E. & Chang, H.Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA–chromatin interactions. Mol. Cell 44, 667–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leppek, K. & Stoecklin, G. An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res. 42, e13 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, L., Murat, P., Matak-Vinkovic, D., Murrell, A. & Balasubramanian, S. Binding interactions between long noncoding RNA HOTAIR and PRC2 proteins. Biochemistry 52, 9519–9527 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Kang, S., Chemaly, E.R., Hajjar, R.J. & Lebeche, D. Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase–mammalian target of rapamycin (AMPK–mTOR) and c-Jun N-terminal kinase–insulin receptor substrate 1 (JNK–IRS1) pathways. J. Biol. Chem. 286, 18465–18473 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, D.H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Sarbassov, D.D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Li, Q., Wang, P., Ye, K. & Cai, H. Central role of SIAH inhibition in DCC-dependent cardioprotection provoked by netrin-1–NO. Proc. Natl. Acad. Sci. USA 112, 899–904 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cabili, M.N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Delgado-Olguín, P. et al. Epigenetic repression of cardiac progenitor gene expression by EZH2 is required for postnatal cardiac homeostasis. Nat. Genet. 44, 343–347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, T. et al. MicroRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochem. Biophys. Res. Commun. 436, 578–584 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Shi, L. et al. Histone demethylase JMJD2B coordinates H3K4 and H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc. Natl. Acad. Sci. USA 108, 7541–7546 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Song, X. et al. mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am. J. Physiol. Cell Physiol. 299, C1256–C1266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, X., Wang, X., Bi, Y., Bu, P. & Zhang, M. The histone demethylase PHF8 represses cardiac hypertrophy upon pressure overload. Exp. Cell Res. 335, 123–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Xu, N. et al. The alteration of protein prenylation induces cardiomyocyte hypertrophy through Rheb–mTORC1 signaling and leads to chronic heart failure. J. Pathol. 235, 672–685 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y. et al. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch. Biochem. Biophys. 558, 79–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Shende, P. et al. Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy. Cardiovasc. Res. 109, 103–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Shende, P. et al. Cardiac Raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression and causes heart failure in mice. Circulation 123, 1073–1082 (2011).

    Article  PubMed  Google Scholar 

  53. Kaneko, S. et al. Phosphorylation of the PRC2 component EZH2 is cell-cycle-regulated and upregulates its binding to ncRNA. Genes Dev. 24, 2615–2620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marketou, M.E., Parthenakis, F. & Vardas, P.E. Pathological left ventricular hypertrophy and stem cells: current evidence and new perspectives. Stem Cells Int. 2016, 5720758 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. National Research Council. Guide for the Care and Use of Laboratory Animals 8th edn. (The National Academies Press, 2011).

  56. MacLellan, W.R., Xiao, G., Abdellatif, M. & Schneider, M.D. A novel Rb- and p300-binding protein inhibits transactivation by MyoD. Mol. Cell. Biol. 20, 8903–8915 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Laake, L.W. et al. Reporter-based isolation of induced pluripotent stem cell– and embryonic stem cell–derived cardiac progenitors reveals limited gene expression variance. Circ. Res. 107, 340–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ubil, E. et al. Mesenchymal–endothelial transition contributes to cardiac neovascularization. Nature 514, 585–590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, Y.Y. et al. Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am. J. Physiol. Heart Circ. Physiol. 279, H429–H436 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR–Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Komurov, K., Dursun, S., Erdin, S. & Ram, P.T. NetWalker: a contextual network analysis tool for functional genomics. BMC Genomics 13, 282 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lu, G. et al. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. J. Clin. Invest. 119, 1678–1687 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nekrasov, M., Wild, B. & Müller, J. Nucleosome-binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 6, 348–353 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baroni, T.E., Chittur, S.V., George, A.D. & Tenenbaum, S.A. Advances in RIP-chip analysis: RNA-binding protein immunoprecipitation–microarray profiling. Methods Mol. Biol. 419, 93–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Leppek, K. & Stoecklin, G. An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res. 42, e13 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Sdek, P. et al. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J. Cell Biol. 194, 407–423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Young, M.D. et al. ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic Acids Res. 39, 7415–7427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Streicher, J.M., Kamei, K., Ishikawa, T.O., Herschman, H. & Wang, Y. Compensatory hypertrophy induced by ventricular-cardiomyocyte-specific COX-2 expression in mice. J. Mol. Cell. Cardiol. 49, 88–94 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mitchell-Jordan, S.A. et al. Loss of Bmx nonreceptor tyrosine kinase prevents pressure-overload-induced cardiac hypertrophy. Circ. Res. 103, 1359–1362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jiang, D.S. et al. Interferon regulatory factor 7 functions as a novel negative regulator of pathological cardiac hypertrophy. Hypertension 63, 713–722 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institute of Health (NIH) (grant no. HL070079 (Y.W.), HL103205 (Y.W.), HL108186 (Y.W.), HL110667 (Y.W.), HL115238 (T.M.V.), R01HG006264 (X.X.) and U01HG007013 (X.X.)), the University of California at Los Angeles CTSI–Cardiovascular Pilot Team research grant UL1TR000124 (Y.W., X.X. and T.M.V.), the National Science Fund for Distinguished Young Scholars (grant no. 81425005; H.L.), the Key Project of the National Natural Science Foundation (grant no. 81330005 and 81630011; both to H.L.), the National Science and Technology Support Project (grant no. 2013YQ030923-05, 2014BAI02B01 and 2015BAI08B01; all to H.L.) and an American Heart Association Western States Affiliate Postdoctoral Fellowship (15POST24970034; Z.W.). C.G. was a recipient of the UCLA Eli and Edythe Broad Center Predoctoral Fellowship in Stem Cell Science. H.W. was supported by the China Scholarship Council (award no. 201406280042) and was a recipient of a Jennifer S. Buchwald Graduate Fellowship in Physiology. A.C. was supported by NIH predoctoral training grant T90DE022734. The authors wish to acknowledge outstanding technical support from H. Pu and Core support from the UCLA Cardiovascular Research Laboratories and the Division of Molecular Medicine at UCLA.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. designed all the experiments with input from H.-T.Y., H.L. and Y.W., performed the majority of the experiments and drafted the manuscript; Y.W. designed and supervised the study; H.L. designed and supervised the in vivo experiments; X.-J.Z., Y.-X.J., P.Z. and K.-Q.D. performed the northern blot, ChIP, FISH, immunoblotting and PV loop assays for Chaer-KO mice with input from H.L.; K.-Q.D., J.G. and H.L. developed the Chaer-knockout mice and performed some of the in vivo experiments; X.W. and G.L. participated in the tagged-RNA pulldown assay and RIP assays; I.C., C.G. and H.W. participated in the lncRNA screening and cloning experiments; T.Y. participated in the histology assay; A.C., X.X. and T.M.V. participated in the transcriptome analysis; S.R. performed the TAC surgery; Y.S.A. and D.S. provided the human iPSC-derived cardiomyocytes; S.L. and A.D. provided the primary cardiac fibroblasts and myocytes from mouse heart.

Corresponding authors

Correspondence to Hongliang Li or Yibin Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5 and Supplementary Figures 1–12 (PDF 5893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, XJ., Ji, YX. et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22, 1131–1139 (2016). https://doi.org/10.1038/nm.4179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing