Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma

Abstract

The MYCN proto-oncogene is amplified in a number of advanced-stage human tumors, such as neuroblastomas. Similar to other members of the MYC family of oncoproteins, MYCN (also known as N-Myc) is a transcription factor, and its stability and activity are tightly controlled by ubiquitination-dependent proteasome degradation1,2,3,4. Although numerous studies have demonstrated that N-Myc is a driver of neuroblastoma tumorigenesis, therapies that directly suppress N-Myc activity in human tumors are limited. Here we have identified ubiquitin-specific protease 7 (USP7; also known as HAUSP)5,6,7 as a regulator of N-Myc function in neuroblastoma. HAUSP interacts with N-Myc, and HAUSP expression induces deubiquitination and subsequent stabilization of N-Myc. Conversely, RNA interference (RNAi)-mediated knockdown of USP7 in neuroblastoma cancer cell lines, or genetic ablation of Usp7 in the mouse brain, destabilizes N-Myc, which leads to inhibition of N-Myc function. Notably, HAUSP is more abundant in patients with neuroblastoma who have poorer prognosis, and HAUSP expression substantially correlates with N-Myc transcriptional activity. Furthermore, small-molecule inhibitors of HAUSP's deubiquitinase activity markedly suppress the growth of MYCN-amplified human neuroblastoma cell lines in xenograft mouse models. Taken together, our findings demonstrate a crucial role of HAUSP in regulating N-Myc function in vivo and suggest that HAUSP inhibition is a potential therapy for MYCN-amplified tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HAUSP affects and directly interacts with N-Myc both in vitro and in vivo.
Figure 2: HAUSP regulates N-Myc through deubiquitination.
Figure 3: Pharmacologically blocking HAUSP-mediated deubiquitination in neuroblastoma cells.
Figure 4: The role of HAUSP on the pathogenesis of neuroblastomas.

Similar content being viewed by others

References

  1. Dang, C.V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Conacci-Sorrell, M., McFerrin, L. & Eisenman, R.N. An overview of MYC and its interactome. Cold Spring Harb. Perspect. Med. 4, a014357 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Popov, N. et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nat. Cell Biol. 9, 765–774 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Otto, T. et al. Stabilization of N-Myc is a critical function of aurora A in human neuroblastoma. Cancer Cell 15, 67–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Li, M., Brooks, C.L., Kon, N. & Gu, W. A dynamic role of HAUSP in the p53–Mdm2 pathway. Mol. Cell 13, 879–886 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hu, M. et al. Crystal structure of a UBP family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Nicholson, B. & Suresh Kumar, K.G. The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem. Biophys. 60, 61–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7 (HAUSP). Nat. Cell Biol. 8, 1064–1073 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Song, M.S. et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP–PML network. Nature 455, 813–817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Du, Z. et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci. Signal. 3, ra80 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Faesen, A.C. et al. Mechanism of USP7 (HAUSP) activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP synthetase. Mol. Cell 44, 147–159 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, H.R. et al. Bilateral inhibition of HAUSP deubiquitinase by a viral interferon regulatory factor protein. Nat. Struct. Mol. Biol. 18, 1336–1344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma, H. et al. M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability. Proc. Natl. Acad. Sci. USA 109, 4828–4833 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colleran, A. et al. Deubiquitination of NF-κB by ubiquitin-specific protease 7 promotes transcription. Proc. Natl. Acad. Sci. USA 110, 618–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Cheng, C., Niu, C., Yang, Y., Wang, Y. & Lu, M. Expression of HAUSP in gliomas correlates with disease progression and survival of patients. Oncol. Rep. 29, 1730–1736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pfoh, R., Lacdao, I.K. & Saridakis, V. Deubiquitinases and the new therapeutic opportunities offered to cancer. Endocr. Relat. Cancer 22, T35–T54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kon, N. et al. Roles of HAUSP-mediated p53 regulation in central nervous system development. Cell Death Differ. 18, 1366–1375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eilers, M. & Eisenman, R.N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dang, C.V. MYC, metabolism, cell growth and tumorigenesis. Cold Spring Harb. Perspect. Med. 3, a014217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Charron, J. et al. Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev. 6, 12A, 2248–2257 (1992).

    Article  Google Scholar 

  22. Stanton, B.R., Perkins, A.S., Tessarollo, L., Sassoon, D.A. & Parada, L.F. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev. 6, 12A, 2235–2247 (1992).

    Article  Google Scholar 

  23. Sawai, S. et al. Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. Development 117, 1445–1455 (1993).

    CAS  PubMed  Google Scholar 

  24. Knoepfler, P.S., Cheng, P.F. & Eisenman, R.N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 16, 2699–2712 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arvanitis, C. & Felsher, D.W. Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin. Cancer Biol. 16, 313–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Colland, F. et al. Small-molecule inhibitor of USP7 (HAUSP) ubiquitin protease stabilizes and activates p53 in cells. Mol. Cancer Ther. 8, 2286–2295 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Altun, M. et al. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol. 18, 1401–1412 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Reverdy, C. et al. Discovery of specific inhibitors of human USP7 (HAUSP) deubiquitinating enzyme. Chem. Biol. 19, 467–477 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Chauhan, D. et al. A small-molecule inhibitor of ubiquitin-specific protease 7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22, 345–358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pugh, T.J. et al. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 45, 279–284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Valentijn, L.J. et al. Functional MYCN signature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proc. Natl. Acad. Sci. USA 109, 19190–19195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, E.S. et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc. Natl. Acad. Sci. USA 99, 11399–11404 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi, S.H., Wright, J.B., Gerber, S.A. & Cole, M.D. Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes Dev. 24, 1236–1241 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sjostrom, S.K., Finn, G., Hahn, W.C., Rowitch, D.H. & Kenney, A.M. The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev. Cell 9, 327–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation–dependent c-Myc protein degradation. Proc. Natl. Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao, X. et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat. Cell Biol. 10, 643–653 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brockmann, M. et al. Small-molecule inhibitors of aurora-A induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell 24, 75–89 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gustafson, W.C. et al. Drugging MYCN through an allosteric transition in aurora kinase A. Cancer Cell 26, 414–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cummins, J.M. & Vogelstein, B. HAUSP is required for p53 destabilization. Cell Cycle 3, 689–692 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Kon, N. et al. Inactivation of HAUSP in vivo modulates p53 function. Oncogene 29, 1270–1279 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Rader, J. et al. Dual CDK4–CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin. Cancer Res. 19, 6173–6182 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Alvarez, M.J. et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat. Genet. 48, 838–847 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Maris (Children's Hospital of Philadelphia) for providing cell lines. This work was supported by the National Cancer Institute, US National Institutes of Health (NIH) (grant no. 5R01CA193890, 5RO1CA190477, 5RO1CA085533 and 2P01CA080058; all to W.G.) and was partially supported by the NIH cancer biology training grant T32-CA09503 (O.T.). The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

The whole project was conceived and designed by O.T. and W.G.; experiments were performed mainly by O.T., D.L. and C.D.; bioinformatic analysis was performed by G.L. and A.C.; and some of the experiments were performed with help from D.B., N.K., C.C., H.S. and D.J.Y. The paper was written by O.T. and W.G.

Corresponding author

Correspondence to Wei Gu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 2595 kb)

Source data to Supplementary Figure 5

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavana, O., Li, D., Dai, C. et al. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med 22, 1180–1186 (2016). https://doi.org/10.1038/nm.4180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4180

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer