Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation

Abstract

Adenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by a family of adenosine deaminase acting on RNA (ADAR) enzymes, is important in the epitranscriptomic regulation of RNA metabolism. However, the role of A-to-I RNA editing in vascular disease is unknown. Here we show that cathepsin S mRNA (CTSS), which encodes a cysteine protease associated with angiogenesis and atherosclerosis, is highly edited in human endothelial cells. The 3′ untranslated region (3′ UTR) of the CTSS transcript contains two inverted repeats, the AluJo and AluSx+ regions, which form a long stem–loop structure that is recognized by ADAR1 as a substrate for editing. RNA editing enables the recruitment of the stabilizing RNA-binding protein human antigen R (HuR; encoded by ELAVL1) to the 3′ UTR of the CTSS transcript, thereby controlling CTSS mRNA stability and expression. In endothelial cells, ADAR1 overexpression or treatment of cells with hypoxia or with the inflammatory cytokines interferon-γ and tumor-necrosis-factor-α induces CTSS RNA editing and consequently increases cathepsin S expression. ADAR1 levels and the extent of CTSS RNA editing are associated with changes in cathepsin S levels in patients with atherosclerotic vascular diseases, including subclinical atherosclerosis, coronary artery disease, aortic aneurysms and advanced carotid atherosclerotic disease. These results reveal a previously unrecognized role of RNA editing in gene expression in human atherosclerotic vascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ADAR1 controls endothelial cell function and induces widespread A-to-I RNA editing in the transcriptome.
Figure 2: ADAR1-induced CTSS Alu element A-to-I RNA editing controls cathepsin S expression and regulates endothelial cell function.
Figure 3: CTSS mRNA stability is controlled by ADAR1- and RNA-editing-dependent HuR recruitment.
Figure 4: ADAR1 expression and CTSS A-to-I RNA editing are induced under hypoxic and pro-inflammatory conditions in human endothelial cells.
Figure 5: Clinical implications of RNA-editing-controlled CTSS mRNA expression in patients with atherosclerotic vascular diseases.
Figure 6: ADAR1-induced CTSS Alu A-to-I RNA editing is associated with upregulated CTSS mRNA expression in human atherosclerotic plaques.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Welti, J., Loges, S., Dimmeler, S. & Carmeliet, P. Recent molecular discoveries in angiogenesis and anti-angiogenic therapies in cancer. J. Clin. Invest. 123, 3190–3200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weber, C. & Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Stamatelopoulos, K. et al. Amyloid-β (1–40) and the risk of death from cardiovascular causes in patients with coronary heart disease. J. Am. Coll. Cardiol. 65, 904–916 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Hansson, G.K. Inflammation, atherosclerosis and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Hoopengardner, B., Bhalla, T., Staber, C. & Reenan, R. Nervous system targets of RNA editing identified by comparative genomics. Science 301, 832–836 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Eggington, J.M., Greene, T. & Bass, B.L. Predicting sites of ADAR editing in double-stranded RNA. Nat. Commun. 2, 319 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Nishikura, K. Editor meets silencer: cross-talk between RNA editing and RNA interference. Nat. Rev. Mol. Cell Biol. 7, 919–931 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wulff, B.E., Sakurai, M. & Nishikura, K. Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing. Nat. Rev. Genet. 12, 81–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Nishikura, K. A-to-I editing of coding and noncoding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Bass, B.L. et al. A standardized nomenclature for adenosine deaminases that act on RNA. RNA 3, 947–949 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Park, E., Williams, B., Wold, B.J. & Mortazavi, A. RNA editing in the human ENCODE RNA-seq data. Genome Res. 22, 1626–1633 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levanon, E.Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Daniel, C., Silberberg, G., Behm, M. & Öhman, M. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol. 15, R28 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bazak, L., Levanon, E.Y. & Eisenberg, E. Genome-wide analysis of Alu editability. Nucleic Acids Res. 42, 6876–6884 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barak, M. et al. Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Res. 37, 6905–6915 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Häsler, J. & Strub, K. Alu elements as regulators of gene expression. Nucleic Acids Res. 34, 5491–5497 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holdt, L.M. et al. Alu elements in ANRIL noncoding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 9, e1003588 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramaswami, G. et al. Identifying RNA editing sites using RNA sequencing data alone. Nat. Methods 10, 128–132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, D.D. et al. Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, G.P. et al. Deficiency of the cysteine protease cathepsin S impairs microvessel growth. Circ. Res. 92, 493–500 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, B. et al. Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J. Biol. Chem. 281, 6020–6029 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Riese, R.J. et al. Cathepsin S activity regulates antigen presentation and immunity. J. Clin. Invest. 101, 2351–2363 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sukhova, G.K. et al. Deficiency of cathepsin S reduces atherosclerosis in LDL-receptor-deficient mice. J. Clin. Invest. 111, 897–906 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng, S.S., Chen, C.Y., Xu, N. & Shyu, A.B. RNA stabilization by the AU-rich-element-binding protein, HuR, an ELAV protein. EMBO J. 17, 3461–3470 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reiser, J., Adair, B. & Reinheckel, T. Specialized roles for cysteine cathepsins in health and disease. J. Clin. Invest. 120, 3421–3431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, J. et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol. 154, 1069–1079 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jobs, E. et al. Association between serum cathepsin S and mortality in older adults. J. Am. Med. Assoc. 306, 1113–1121 (2011).

    Article  CAS  Google Scholar 

  30. Wu, Y. et al. Adenosine deaminase that acts on RNA 1 p150 in alveolar macrophage is involved in LPS-induced lung injury. Shock 31, 410–415 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Folkersen, L. et al. Unraveling divergent gene expression profiles in bicuspid and tricuspid aortic valve patients with thoracic aortic dilatation: the ASAP study. Mol. Med. 17, 1365–1373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perisic, L. et al. Gene expression signatures, pathways and networks in carotid atherosclerosis. J. Intern. Med. 279, 293–308 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Rueter, S.M., Dawson, T.R. & Emeson, R.B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Ota, H. et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153, 575–589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hartner, J.C., Walkley, C.R., Lu, J. & Orkin, S.H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Q. et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279, 4952–4961 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Hartner, J.C. et al. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 279, 4894–4902 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Qiu, W. et al. ADAR1 is essential for intestinal homeostasis and stem cell maintenance. Cell Death Dis. 4, e599 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mannion, N.M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rice, G.I. et al. Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gandy, S.Z. et al. RNA editing of the human herpesvirus 8 kaposin transcript eliminates its transforming activity and is induced during lytic replication. J. Virol. 81, 13544–13551 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rabinovici, R. et al. ADAR1 is involved in the development of microvascular lung injury. Circ. Res. 88, 1066–1071 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, J.H. et al. Widespread inosine-containing mRNA in lymphocytes regulated by ADAR1 in response to inflammation. Immunology 109, 15–23 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang, Q. et al. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA 110, 1041–1046 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, L. et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19, 209–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nemlich, Y. et al. MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth. J. Clin. Invest. 123, 2703–2718 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nevo-Caspi, Y., Amariglio, N., Rechavi, G. & Paret, G. A-to-I RNA editing is induced upon hypoxia. Shock 35, 585–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Levy, N.S., Chung, S., Furneaux, H. & Levy, A.P. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J. Biol. Chem. 273, 6417–6423 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Chang, S.H. et al. Antagonistic function of the RNA-binding protein HuR and miR-200b in post-transcriptional regulation of vascular endothelial growth factor–A expression and angiogenesis. J. Biol. Chem. 288, 4908–4921 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Lin, F.Y. et al. The role of human antigen R, an RNA-binding protein, in mediating the stabilization of toll-like receptor 4 mRNA induced by endotoxin: a novel mechanism involved in vascular inflammation. Arterioscler. Thromb. Vasc. Biol. 26, 2622–2629 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Dixon, D.A. et al. Expression of COX-2 in platelet–monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J. Clin. Invest. 116, 2727–2738 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Korff, T. & Augustin, H.G. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol. 143, 1341–1352 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Diehl, F., Rössig, L., Zeiher, A.M., Dimmeler, S. & Urbich, C. The histone methyltransferase MLL is an upstream regulator of endothelial-cell sprout formation. Blood 109, 1472–1478 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Ramaswami, G. et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods 9, 579–581 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dabiri, G.A., Lai, F., Drakas, R.A. & Nishikura, K. Editing of the GLURB ion channel RNA in vitro by recombinant double-stranded RNA adenosine deaminase. EMBO J. 15, 34–45 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lai, F., Chen, C.X., Carter, K.C. & Nishikura, K. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol. Cell. Biol. 17, 2413–2424 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Raitskin, O., Cho, D.S., Sperling, J., Nishikura, K. & Sperling, R. RNA editing activity is associated with splicing factors in lnRNP particles: the nuclear pre-mRNA processing machinery. Proc. Natl. Acad. Sci. USA 98, 6571–6576 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual-nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Georgiopoulos, G.A. et al. Prolactin and preclinical atherosclerosis in menopausal women with cardiovascular risk factors. Hypertension 54, 98–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Stamatelopoulos, K.S. et al. Atherosclerosis in rheumatoid arthritis versus diabetes: a comparative study. Arterioscler. Thromb. Vasc. Biol. 29, 1702–1708 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Naylor, A.R., Rothwell, P.M. & Bell, P.R. Overview of the principal results and secondary analyses from the European and North American randomized trials of endarterectomy for symptomatic carotid stenosis. Eur. J. Vasc. Endovasc. Surg. 26, 115–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Halliday, A. et al. 10-year stroke prevention after successful carotid endarterectomy for asymptomatic stenosis (ACST-1): a multicenter randomized trial. Lancet 376, 1074–1084 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the 'FFF–Innovation 2012' program of the J.W. Goethe University Frankfurt (K. Stellos), the August–Scheidel Stiftung (K. Stellos), the Excellence Cluster Cardio-Pulmonary System (ECCPS) (K. Stellos), the Else Kröner–Fresenius–Stiftung (K. Stellos), the LOEWE Center for Cell and Gene Therapy (State of Hessen) (K. Stellos), the German Center for Cardiovascular Research (DZHK) (K. Stellos) and the German Cardiac Society (K. Stellos). H.S. and S.D. are members of the cluster of excellence 'macromolecular complexes'. B.F., H.S. and S.D. are supported by DFG SFB902. The BiKE study (U.H.) was conducted with support from the Swedish Heart and Lung Foundation, the Swedish Research Council, Uppdrag Besegra Stroke, the Strategic Cardiovascular Programs of Karolinska Institutet and the Stockholm County Council, the Foundation for Strategic Research and the European Commission (CarTarDis, AtheroRemo, VIA and AtheroFlux projects). L.P.M. was supported by the Swedish Society for Medical Research (SSMF). The thoracic aortic aneurysm study (P.E.) was supported by the Swedish Research Council, the Swedish Heart–Lung Foundation and a donation by F. Lundberg. O.R. is supported by the LOEWE program 'Medical RNomics' (State of Hessen). The authors would like to thank I. Dikic (Goethe University Frankfurt) for providing us with the HeLa cells, A. Knau for expert technical support, G. Georgiopoulos for statistical consulting, R. Achangwa and M. Sachse for proofreading, M. Karakitsou for technical assistance in subclinical atherosclerosis assessment, and A. Mareti, C. Kritsioti and A. Kotsogianni for helping with the recruitment of patients of the PBMC cohort.

Author information

Authors and Affiliations

Authors

Contributions

K. Stellos and S.D. designed and guided research; K. Stellos, A.G., L.P.M., F.F.L., C.A. and Y.M. performed research; K. Stellos, A.G., K. Stamatelopoulos, L.P.M., F.F.L., J.-N.B., P.E., U.H. and S.D. analyzed data; T.K. recruited the pilot PBMC cohort; K. Stamatelopoulos recruited the validation PBMC cohort and performed the assessment of subclinical atherosclerosis; F.S., L.P.M. and U.H. provided the control arteries and the carotid atherosclerotic plaque tissues; X.Y. and W.C. performed RNA-seq; D.J. and S.U. performed the bioinformatic analysis; N.J., D.J., O.R., W.C. and A.B. performed and analyzed the iCLIP experiments; A.F.-C. and P.E. provided the human aortic aneurysm tissues; A.G., K. Stamatelopoulos, L.P.M., R.A.B., L.M., B.F., H.S., P.E., U.H., A.M.Z. and S.D. gave conceptual advice; and K. Stellos drafted the paper with input from all authors.

Corresponding authors

Correspondence to Konstantinos Stellos or Stefanie Dimmeler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–14 (PDF 5514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stellos, K., Gatsiou, A., Stamatelopoulos, K. et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med 22, 1140–1150 (2016). https://doi.org/10.1038/nm.4172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing