Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1

Abstract

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate genes involved in energy metabolism and inflammation. For biological activity, PPARs require cognate lipid ligands, heterodimerization with retinoic X receptors, and coactivation by PPAR-γ coactivator-1α or PPAR-γ coactivator-1β (PGC-1α or PGC-1β, encoded by Ppargc1a and Ppargc1b, respectively). Here we show that lipolysis of cellular triglycerides by adipose triglyceride lipase (patatin-like phospholipase domain containing protein 2, encoded by Pnpla2; hereafter referred to as Atgl) generates essential mediator(s) involved in the generation of lipid ligands for PPAR activation. Atgl deficiency in mice decreases mRNA levels of PPAR-α and PPAR-δ target genes. In the heart, this leads to decreased PGC-1α and PGC-1β expression and severely disrupted mitochondrial substrate oxidation and respiration; this is followed by excessive lipid accumulation, cardiac insufficiency and lethal cardiomyopathy. Reconstituting normal PPAR target gene expression by pharmacological treatment of Atgl-deficient mice with PPAR-α agonists completely reverses the mitochondrial defects, restores normal heart function and prevents premature death. These findings reveal a potential treatment for the excessive cardiac lipid accumulation and often-lethal cardiomyopathy in people with neutral lipid storage disease, a disease marked by reduced or absent ATGL activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of PPAR-α and PPAR-δ target genes and PGC-1α and PGC-1β in AtglKO, HslKO, and wild-type tissues.
Figure 2: Morphology, glycogen content, mitochondria size and mitochondrial DNA content in cardiac muscle of wild-type and AtglKO mice.
Figure 3: Mitochondrial OXPHOS function and oxidative stress in cardiac muscle of wild-type and AtglKO mice.
Figure 4: Changes in PPAR-α and PPAR-δ activated gene expression and OXPHOS in mice lacking or overexpressing Atgl in cardiac muscle.
Figure 5: Triglyceride content, oxygen consumption and cardiac function in AtglKO mice treated with PPAR-α agonists.
Figure 6: Life span, tissue triglyceride content and energy substrate utilization in wild-type and AtglKO mice treated with the PPAR-α agonist Wy14643.

Similar content being viewed by others

References

  1. Madrazo, J.A. & Kelly, D.P. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J. Mol. Cell. Cardiol. 44, 968–975 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Lefebvre, P., Chinetti, G., Fruchart, J.C. & Staels, B. Sorting out the roles of PPAR-α in energy metabolism and vascular homeostasis. J. Clin. Invest. 116, 571–580 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barish, G.D., Narkar, V.A. & Evans, R.M. PPAR-δ: a dagger in the heart of the metabolic syndrome. J. Clin. Invest. 116, 590–597 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tontonoz, P. & Spiegelman, B.M. Fat and beyond: the diverse biology of PPAR-γ. Annu. Rev. Biochem. 77, 289–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Lehman, J.J. et al. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106, 847–856 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Rowe, G.C., Jiang, A. & Arany, Z. PGC-1 coactivators in cardiac development and disease. Circ. Res. 107, 825–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Forman, B.M., Chen, J. & Evans, R.M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc. Natl. Acad. Sci. USA 94, 4312–4317 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Kliewer, S.A. et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc. Natl. Acad. Sci. USA 94, 4318–4323 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Krey, G. et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11, 779–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, K. et al. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem. 270, 23975–23983 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Chakravarthy, M.V. et al. Identification of a physiologically relevant endogenous ligand for PPAR-α in liver. Cell 138, 476–488 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ziouzenkova, O. et al. Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc. Natl. Acad. Sci. USA 100, 2730–2735 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Chakravarthy, M.V. et al. “New” hepatic fat activates PPAR-α to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab. 1, 309–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Zechner, R., Kienesberger, P.C., Haemmerle, G., Zimmermann, R. & Lass, A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J. Lipid Res. 50, 3–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Osuga, J. et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc. Natl. Acad. Sci. USA 97, 787–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Haemmerle, G. et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 277, 4806–4815 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Pinent, M. et al. Differential transcriptional modulation of biological processes in adipocyte triglyceride lipase and hormone-sensitive lipase-deficient mice. Genomics 92, 26–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Haemmerle, G. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Fischer, J. et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat. Genet. 39, 28–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Hirano, K., Ikeda, Y., Zaima, N., Sakata, Y. & Matsumiya, G. Triglyceride deposit cardiomyovasculopathy. N. Engl. J. Med. 359, 2396–2398 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Benton, C.R. et al. Modest PGC-1α overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria. J. Biol. Chem. 283, 4228–4240 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Holloway, G.P., Gurd, B.J., Snook, L.A., Lally, J. & Bonen, A. Compensatory increases in nuclear PGC-1α protein are primarily associated with subsarcolemmal mitochondrial adaptations in ZDF rats. Diabetes 59, 819–828 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wolfrum, C., Borrmann, C.M., Borchers, T. & Spener, F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha- and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc. Natl. Acad. Sci. USA 98, 2323–2328 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, L. et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat. Med. 10, 1245–1250 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, C.H. et al. PPAR-δ regulates glucose metabolism and insulin sensitivity. Proc. Natl. Acad. Sci. USA 103, 3444–3449 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. USA 100, 15924–15929 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Sznaidman, M.L. et al. Novel selective small molecule agonists for peroxisome proliferator-activated receptor delta (PPAR-δ)–synthesis and biological activity. Bioorg. Med. Chem. Lett. 13, 1517–1521 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Reid, B.N. et al. Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J. Biol. Chem. 283, 13087–13099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ong, K.T., Mashek, M.T., Bu, S.Y., Greenberg, A.S. & Mashek, D.G. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 53, 1116–1126 (2011).

    Article  Google Scholar 

  31. Sapiro, J.M., Mashek, M.T., Greenberg, A.S. & Mashek, D.G. Hepatic triacylglycerol hydrolysis regulates peroxisome proliferator-activated receptor alpha activity. J. Lipid Res. 50, 1621–1629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Augustus, A. et al. Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. J. Biol. Chem. 279, 25050–25057 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Yagyu, H. et al. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J. Clin. Invest. 111, 419–426 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Duncan, J.G. et al. Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-α activators. Circulation 121, 426–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Tan, N.S. et al. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol. Cell. Biol. 22, 5114–5127 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Valle, I., Alvarez-Barrientos, A., Arza, E., Lamas, S. & Monsalve, M. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 66, 562–573 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Hood, D.A. Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J. Appl. Physiol. 90, 1137–1157 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Sugden, M.C., Caton, P.W. & Holness, M.J. PPAR control: it's SIRTainly as easy as PGC. J. Endocrinol. 204, 93–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Lin, J., Handschin, C. & Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).

    Article  PubMed  Google Scholar 

  41. Hock, M.B. & Kralli, A. Transcriptional control of mitochondrial biogenesis and function. Annu. Rev. Physiol. 71, 177–203 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Hondares, E. et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1α gene transcription: an autoregulatory loop controls PGC-1α expression in adipocytes via peroxisome proliferator-activated receptor-γ coactivation. Endocrinology 147, 2829–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Duncan, J.G., Fong, J.L., Medeiros, D.M., Finck, B.N. & Kelly, D.P. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-α/PGC-1α gene regulatory pathway. Circulation 115, 909–917 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lai, L. et al. Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal maturation of the heart. Genes Dev. 22, 1948–1961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aoyama, T. et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARα). J. Biol. Chem. 273, 5678–5684 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Chou, C.J. et al. WY14,643, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, improves hepatic and muscle steatosis and reverses insulin resistance in lipoatrophic A-ZIP/F-1 mice. J. Biol. Chem. 277, 24484–24489 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Ye, J.M. et al. Peroxisome proliferator-activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-γ activation. Diabetes 50, 411–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Cheng, L. et al. Peroxisome proliferator-activated receptor gamma activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem. Biophys. Res. Commun. 313, 277–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Schweiger, M., Lass, A., Zimmermann, R., Eichmann, T.O. & Zechner, R. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am. J. Physiol. Endocrinol. Metab. 297, E289–E296 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Igal, R.A., Rhoads, J.M. & Coleman, R.A. Neutral lipid storage disease with fatty liver and cholestasis. J. Pediatr. Gastroenterol. Nutr. 25, 541–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Rosenson, R.S. Fenofibrate: treatment of hyperlipidemia and beyond. Expert Rev. Cardiovasc. Ther. 6, 1319–1330 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Vikramadithyan, R.K. et al. Peroxisome proliferator-activated receptor agonists modulate heart function in transgenic mice with lipotoxic cardiomyopathy. J. Pharmacol. Exp. Ther. 313, 586–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Y.X. et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Song, Q. et al. Rescue of cardiomyocyte dysfunction by phospholamban ablation does not prevent ventricular failure in genetic hypertrophy. J. Clin. Invest. 111, 859–867 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brüning, J.C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    Article  PubMed  Google Scholar 

  56. Gulick, J., Subramaniam, A., Neumann, J. & Robbins, J. Isolation and characterization of the mouse cardiac myosin heavy chain genes. J. Biol. Chem. 266, 9180–9185 (1991).

    CAS  PubMed  Google Scholar 

  57. Zhao, G., Zhang, X., Xu, X., Wolin, M.S. & Hintze, T.H. Depressed modulation of oxygen consumption by endogenous nitric oxide in cardiac muscle from diabetic dogs. Am. J. Physiol. Heart Circ. Physiol. 279, H520–H527 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Blattner, J.R., He, L. & Lemasters, J.J. Screening assays for the mitochondrial permeability transition using a fluorescence multiwell plate reader. Anal. Biochem. 295, 220–226 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Nemoto, Y. et al. Altered expression of fatty acid-metabolizing enzymes in aromatase-deficient mice. J. Clin. Invest. 105, 1819–1825 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the following grants: GOLD - Genomics of Lipid-Associated Disorders as part of the Austrian Genome Project (GEN-AU) funded by the Forschungsförderungsgesellschaft (FFG) and the Bundesministerium für Wissenschaft und Forschung (BMWF); Spezialforschungsbereich (SFB) LIPOTOX F30, Doktoratskolleg: Molecular Enzymology W901, the Wittgenstein Award 2007 Z136 and research grant P20602 funded by the Austrian Science Fund (FWF); Targeting Obesity-driven Inflammation (TOBI) contract no. 201608 and LipidomicNet contract no. 202272 funded by the European Commission. Additional funding for the SFB LIPOTOX was granted by the County of Styria and the City of Graz. P.S. is supported by the Research Grant for Innovative Research from the Netherlands Organization for Scientific Research (Grant 918.96.618). T.v.d.W. was supported by the Center for Translational Molecular Medicine (CTMM) project PREDICCt (Grant 01C-104) and the Netherlands Heart Foundation, the Dutch Diabetes Research Foundation and the Dutch Kidney Foundation. We thank E. Zechner and C. Schober-Trummler for proofreading the manuscript and S. Lang for the preparation of the cartoon. The pBS II SK+ vector containing the α-MHC promoter region (Genbank: U71441) was provided by J. Robbins (University of Cincinnati). The expression plasmids for (PPRE)6-tk-luciferase and human PPAR-α were provided by B. Staels (University of Lille).

Author information

Authors and Affiliations

Authors

Contributions

G.H. and R.Z. designed the study, were involved in all aspects of the experiments and wrote the manuscript. T.M. and D.J. were responsible for quantitative RT-qPCR–based gene expression analyses and luciferase assays. G.W. and B.M. were responsible for the measurements of tissue oxygen consumption. P. K., D.K. and S.C. were responsible for electron microscopy. S.B., F.M., N.W., T.v.d.W., M.H. and P.S. were responsible for mitochondrial analyses. P.C.K., T.K. and T.R. generated the transgenic mouse strains. K.Z., F.P.W.R., R.S., T.E., M.S., M.K., S.E., G.S. and N.M.P. were responsible for agonist application, dietary studies, plasma and tissue parameter analyses and enzymatic assays. A.S. and B.P. were responsible for echocardiography. E.E.K. generated Atgl-floxed mice. K.P.-L., M.T., A.L., R.Z. and G.H. discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Rudolf Zechner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–4 (PDF 1245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haemmerle, G., Moustafa, T., Woelkart, G. et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat Med 17, 1076–1085 (2011). https://doi.org/10.1038/nm.2439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing