The genomic architecture of sporadic heart failure

Circ Res. 2011 May 13;108(10):1270-83. doi: 10.1161/CIRCRESAHA.110.229260.

Abstract

Common or sporadic systolic heart failure (heart failure) is the clinical syndrome of insufficient forward cardiac output resulting from myocardial disease. Most heart failure is the consequence of ischemic or idiopathic cardiomyopathy. There is a clear familial predisposition to heart failure, with a genetic component estimated to confer between 20% and 30% of overall risk. The multifactorial etiology of this syndrome has complicated identification of its genetic underpinnings. Until recently, almost all genetic studies of heart failure were designed and deployed according to the common disease-common variant hypothesis, in which individual risk alleles impart a small positive or negative effect and overall genetic risk is the cumulative impact of all functional genetic variations. Early studies used a candidate gene approach focused mainly on factors within adrenergic and renin-angiotensin pathways that affect heart failure progression and are targeted by standard pharmacotherapeutics. Many of these reported allelic associations with heart failure have not been replicated. However, the preponderance of data supports risk-modifier effects for the Arg389Gly polymorphism of β1-adrenergic receptors and the intron 16 in/del polymorphism of angiotensin-converting enzyme. Recent unbiased studies using genome-wide single nucleotide polymorphism microarrays have shown fewer positive results than when these platforms were applied to hypertension, myocardial infarction, or diabetes, possibly reflecting the complex etiology of heart failure. A new cardiovascular gene-centric subgenome single nucleotide polymorphism array identified a common heat failure risk allele at 1p36 in multiple independent cohorts, but the biological mechanism for this association is still uncertain. It is likely that common gene polymorphisms account for only a fraction of individual genetic heart failure risk, and future studies using deep resequencing are likely to identify rare gene variants with larger biological effects.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Alleles
  • Animals
  • Genetic Association Studies / methods
  • Genetic Predisposition to Disease / genetics
  • Genetic Testing / methods
  • Genetic Variation / genetics
  • Heart Failure / diagnosis*
  • Heart Failure / genetics*
  • Humans
  • Polymorphism, Genetic / genetics