Direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue

Circ Arrhythm Electrophysiol. 2011 Jun;4(3):373-8. doi: 10.1161/CIRCEP.110.961169. Epub 2011 Mar 15.

Abstract

Background: The lethal isotherm for radiofrequency catheter ablation of cardiac myocardium is widely accepted to be 50°C, but this has not been directly measured. The purpose of this study was to directly measure the tissue temperature at the edge of radiofrequency lesions in real time using infrared thermal imaging.

Methods and results: Fifteen radiofrequency lesions of 6 to 240 seconds in duration were applied to the left ventricular surface of isolated perfused pig hearts. At the end of radiofrequency delivery, a thermal image of the tissue surface was acquired with an infrared camera. The lesion was then stained and an optical image of the lesion was obtained. The thermal and optical images were electronically merged to allow determination of the tissue temperature at the edge of the lesion at the end of radiofrequency delivery. By adjusting the temperature overlay display to conform with the edge of the radiofrequency lesion, the lethal isotherm was measured to be 60.6°C (interquartile ranges, 59.7° to 62.4°C; range, 58.1° to 64.2°C). The areas encompassed by the lesion border in the optical image and the lethal isotherm in the thermal image were statistically similar and highly correlated (Spearman ρ=0.99, P<0.001). The lethal isotherm temperature was not related to the duration of radiofrequency delivery or to lesion size (both P>0.64). The areas circumscribed by 50°C isotherms were significantly larger than the areas of the lesions on optical imaging (P=0.002).

Conclusions: By direct measurement, the lethal isotherm for cardiac myocardium is near 61°C for radiofrequency energy deliveries <240 seconds in duration. A 50°C isotherm overestimates lesion size. Accurate knowledge of the lethal isotherm for radiofrequency ablation is important to clinical practice as well as mathematical modeling of radiofrequency lesions.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Body Temperature*
  • Catheter Ablation / methods*
  • Disease Models, Animal
  • Myocardium / pathology*
  • Swine
  • Tachycardia, Ventricular / diagnosis*
  • Tachycardia, Ventricular / surgery