Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1-SERCA2a gene delivery in experimental heart failure

Eur J Heart Fail. 2011 Mar;13(3):247-53. doi: 10.1093/eurjhf/hfq234. Epub 2011 Feb 2.

Abstract

Aims: Down-regulation of sarcoplasmic reticulum calcium ATPase (SERCA2a) is a key molecular abnormality in heart failure (HF), which is not currently addressed by specific pharmacotherapy. We sought to evaluate, in detail, the impact of augmented SERCA2a expression on left ventricular (LV) mechanics in a large animal model of HF.

Methods and results: Heart failure was induced in adult sheep by rapid pacing (180 b.p.m.) for 1 month, followed by delivery of adeno-associated virus (AAV) 2/1-SERCA, using a percutaneous, recirculating system for gene delivery over a 10 min period. Left ventricular mechanics was investigated by echocardiography and conductance catheter measurements in sheep receiving AAV2/1-SERCA2a after a further 4 weeks of pacing in comparison with untreated HF controls. Left ventricular function was significantly improved in the AAV2/1-SERCA2a-treated group, despite continued pacing, as measured by fractional shortening (delta absolute FS, control -4.2 ± 1.5% vs. treatment 4.4 ± 1.5%; P < 0.01) and conductance catheterization (delta Ees, control -1.22 ± 0.60 vs. treatment 0.65 ± 0.51; P < 0.05). Western blots showed an increase in SERCA protein in AAV2/1-SERCA2a-treated animals, and an analysis of gene delivery showed no evidence of regional myocardial heterogeneity in the distribution of AAV2/1-SERCA.

Conclusion: In a large animal model, AAV2/1-mediated SERCA2a gene delivery using percutaneous, recirculating cardiac delivery leads to improved LV function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dependovirus / genetics
  • Disease Models, Animal
  • Gene Transfer Techniques
  • Genetic Therapy*
  • Heart Failure / therapy*
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / genetics
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / pharmacology
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / therapeutic use*
  • Sheep
  • Ventricular Function, Left / drug effects*
  • Ventricular Function, Left / genetics

Substances

  • Sarcoplasmic Reticulum Calcium-Transporting ATPases