Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pharmacological correction of a defect in PPAR-γ signaling ameliorates disease severity in Cftr-deficient mice

Abstract

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport1. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs2 as well as numerous other abnormalities that include inflammation of affected organs1, alterations in lipid metabolism3 and insulin resistance4. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator–activated receptor-γ (PPAR-γ, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-γ ligand 15-keto-prostaglandin E2 (15-keto-PGE2). Treatment of Cftr-deficient mice with the synthetic PPAR-γ ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-γ signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of PPAR-γ activation on the cystic fibrosis intestinal phenotype in mice.
Figure 2: PPAR-γ function and CFTR intestinal phenotype.
Figure 3: Effect of rosiglitzone on Car4 and Car2 expression and bicarbonate transport.
Figure 4: Molecular analysis of PPAR-γ function in Cftr−/− colonic epithelial cells.

Similar content being viewed by others

References

  1. O'Sullivan, B.P. & Freedman, S.D. Cystic fibrosis. Lancet 373, 1891–1904 (2009).

    Article  Google Scholar 

  2. Zuelzer, W.W. & Newton, W.A. Jr. The pathogenesis of fibrocystic disease of the pancreas; a study of 36 cases with special reference to the pulmonary lesions. Pediatrics 4, 53–69 (1949).

    CAS  PubMed  Google Scholar 

  3. Freedman, S.D. et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N. Engl. J. Med. 350, 560–569 (2004).

    Article  CAS  Google Scholar 

  4. Hardin, D.S., LeBlanc, A., Lukenbough, S. & Seilheimer, D.K. Insulin resistance is associated with decreased clinical status in cystic fibrosis. J. Pediatr. 130, 948–956 (1997).

    Article  CAS  Google Scholar 

  5. Snouwaert, J.N. et al. An animal model for cystic fibrosis made by gene targeting. Science 257, 1083–1088 (1992).

    Article  CAS  Google Scholar 

  6. Eckman, E.A., Cotton, C.U., Kube, D.M. & Davis, P.B. Dietary changes improve survival of CFTR S489X homozygous mutant mouse. Am. J. Physiol. 269, L625–L630 (1995).

    CAS  PubMed  Google Scholar 

  7. Clarke, L.L., Gawenis, L.R., Franklin, C.L. & Harline, M.C. Increased survival of CFTR knockout mice with an oral osmotic laxative. Lab. Anim. Sci. 46, 612–618 (1996).

    CAS  PubMed  Google Scholar 

  8. Gene Ontology Consortium. Creating the gene ontology resource: design and implementation. Genome Res. 11, 1425–1433 (2001).

  9. Ollero, M. et al. Decreased expression of peroxisome proliferator activated receptor γ in Cftr−/− mice. J. Cell. Physiol. 200, 235–244 (2004).

    Article  CAS  Google Scholar 

  10. Yu, S. et al. Human peroxisome proliferator–activated receptor α (PPARα) supports the induction of peroxisome proliferation in PPARα–deficient mouse liver. J. Biol. Chem. 276, 42485–42491 (2001).

    Article  CAS  Google Scholar 

  11. Tachibana, K. et al. Gene expression profiling of potential peroxisome proliferator–activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms. Nucl. Recept. 3, 3 (2005).

    Article  Google Scholar 

  12. Lytle, C. et al. The peroxisome proliferator–activated receptor γ ligand rosiglitazone delays the onset of inflammatory bowel disease in mice with interleukin 10 deficiency. Inflamm. Bowel Dis. 11, 231–243 (2005).

    Article  Google Scholar 

  13. Madison, B.B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).

    Article  CAS  Google Scholar 

  14. Adachi, M. et al. Peroxisome proliferator activated receptor γ in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut 55, 1104–1113 (2006).

    Article  CAS  Google Scholar 

  15. Hamosh, A., Rosenstein, B.J. & Cutting, G.R. CFTR nonsense mutations G542X and W1282X associated with severe reduction of CFTR mRNA in nasal epithelial cells. Hum. Mol. Genet. 1, 542–544 (1992).

    Article  CAS  Google Scholar 

  16. Zeitlin, P.L. et al. A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12–SV40 infection. Am. J. Respir. Cell Mol. Biol. 4, 313–319 (1991).

    Article  CAS  Google Scholar 

  17. Leppilampi, M. et al. Carbonic anhydrase isozyme-II–deficient mice lack the duodenal bicarbonate secretory response to prostaglandin E2 . Proc. Natl. Acad. Sci. USA 102, 15247–15252 (2005).

    Article  CAS  Google Scholar 

  18. McMurtrie, H.L. et al. The bicarbonate transport metabolon. J. Enzyme Inhib. Med. Chem. 19, 231–236 (2004).

    Article  CAS  Google Scholar 

  19. Sellers, Z.M. et al. Heat-stable enterotoxin of Escherichia coli stimulates a non–CFTR-mediated duodenal bicarbonate secretory pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G654–G663 (2005).

    Article  CAS  Google Scholar 

  20. Rodríguez, J.C., Gil-Gomez, G., Hegardt, F.G. & Haro, D. Peroxisome proliferator–activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J. Biol. Chem. 269, 18767–18772 (1994).

    PubMed  Google Scholar 

  21. Mandard, S. et al. The direct peroxisome proliferator–activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J. Biol. Chem. 279, 34411–34420 (2004).

    Article  CAS  Google Scholar 

  22. Ge, K. et al. Transcription coactivator TRAP220 is required for PPARγ2–stimulated adipogenesis. Nature 417, 563–567 (2002).

    Article  CAS  Google Scholar 

  23. Yuan, C.X., Ito, M., Fondell, J.D., Fu, Z.Y. & Roeder, R.G. The TRAP220 component of a thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl. Acad. Sci. USA 95, 7939–7944 (1998).

    Article  CAS  Google Scholar 

  24. Wigren, J. et al. Differential recruitment of the coactivator proteins CREB-binding protein and steroid receptor coactivator-1 to peroxisome proliferator–activated receptor γ/9-cis-retinoic acid receptor heterodimers by ligands present in oxidized low-density lipoprotein. J. Endocrinol. 177, 207–214 (2003).

    Article  CAS  Google Scholar 

  25. Chou, W.L. et al. Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor γ activation. J. Biol. Chem. 282, 18162–18172 (2007).

    Article  CAS  Google Scholar 

  26. Perez, A. et al. Peroxisome proliferator-activated receptor-γ in cystic fibrosis lung epithelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L303–L313 (2008).

    Article  CAS  Google Scholar 

  27. Lucidi, V., Ciabattoni, G., Bella, S., Barnes, P.J. & Montuschi, P. Exhaled 8-isoprostane and prostaglandin E2 in patients with stable and unstable cystic fibrosis. Free Radic. Biol. Med. 45, 913–919 (2008).

    Article  CAS  Google Scholar 

  28. Su, C.G. et al. A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response. J. Clin. Invest. 104, 383–389 (1999).

    Article  CAS  Google Scholar 

  29. Lewis, J.D. et al. An open-label trial of the PPAR-γ ligand rosiglitazone for active ulcerative colitis. Am. J. Gastroenterol. 96, 3323–3328 (2001).

    CAS  PubMed  Google Scholar 

  30. Matsui, H. et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015 (1998).

    Article  CAS  Google Scholar 

  31. Garcia, M.A., Yang, N. & Quinton, P.M. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator–dependent bicarbonate secretion. J. Clin. Invest. 119, 2613–2622 (2009).

    Article  CAS  Google Scholar 

  32. Quinton, P.M. Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 372, 415–417 (2008).

    Article  CAS  Google Scholar 

  33. Nichols, D.P., Konstan, M.W. & Chmiel, J.F. Anti-inflammatory therapies for cystic fibrosis–related lung disease. Clin. Rev. Allergy Immunol. 35, 135–153 (2008).

    Article  CAS  Google Scholar 

  34. Konstan, M.W. et al. Effect of ibuprofen on neutrophil migration in vivo in cystic fibrosis and healthy subjects. J. Pharmacol. Exp. Ther. 306, 1086–1091 (2003).

    Article  CAS  Google Scholar 

  35. Akiyama, T.E. et al. Conditional disruption of the peroxisome proliferator-activated receptor γ gene in mice results in lowered expression of ABCA1, ABCG1 and apoE in macrophages and reduced cholesterol efflux. Mol. Cell. Biol. 22, 2607–2619 (2002).

    Article  CAS  Google Scholar 

  36. Rogler, G. et al. Establishment of long-term primary cultures of human small and large intestinal epithelial cells. Lab. Invest. 78, 889–890 (1998).

    CAS  PubMed  Google Scholar 

  37. Ogawa, S. et al. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1–dependent gene networks required for macrophage activation. Proc. Natl. Acad. Sci. USA 101, 14461–14466 (2004).

    Article  CAS  Google Scholar 

  38. Blaho, V.A., Buczynski, M.W., Brown, C.R. & Dennis, E.A. Lipidomic analysis of dynamic eicosanoid responses during the induction and resolution of Lyme arthritis. J. Biol. Chem. 284, 21599–21612 (2009).

    Article  CAS  Google Scholar 

  39. Zarini, S., Gijon, M.A., Folco, G. & Murphy, R.C. Effect of arachidonic acid reacylation on leukotriene biosynthesis in human neutrophils stimulated with granulocyte-macrophage colony–stimulating factor and formyl-methionyl-leucyl-phenylalanine. J. Biol. Chem. 281, 10134–10142 (2006).

    Article  CAS  Google Scholar 

  40. Quehenberger, O., Armando, A., Dumlao, D., Stephens, D.L. & Dennis, E.A. Lipidomics analysis of essential fatty acids in macrophages. Prostaglandins Leukot. Essent. Fatty Acids 79, 123–129 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Quinton for advice and critical reading of the manuscript. We thank the late J. Isenberg (University of California–San Diego) for providing Cftrtm1Unc mice, R. Sasik for assistance with microarray data analysis and D. McCole for assistance with chloride transport studies. Microarray analysis was performed at the Biogem Core Facility of the University of California–San Diego, and histopathology was performed by the University of California–San Diego Histopathology Core Facility. These studies were supported by US National Institutes of Health grants P01DK074868, GM 069338-03 and DK063491 to C.K.G. and E.A.D.; US National Institutes of Health grant DK007202 and Fellowship to Faculty Transition Award from the Foundation for Digestive Health and Nutrition to G.S.H.

Author information

Authors and Affiliations

Authors

Contributions

G.S.H. wrote the manuscript and conducted the breeding, survival, histology, chloride ion transport, gene expression and ChIP experiments. D.S.D. performed the lipidomic analysis by mass spectrometry. D.T.N. performed western blot and luciferase assays. H.D. conducted the bicarbonate ion transport experiments. K.E.B. and E.A.D. contributed to experimental design and data analysis and edited the manuscript. C.K.G. supervised the project, analyzed data and edited the manuscript.

Corresponding authors

Correspondence to Gregory S Harmon or Christopher K Glass.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 2061 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmon, G., Dumlao, D., Ng, D. et al. Pharmacological correction of a defect in PPAR-γ signaling ameliorates disease severity in Cftr-deficient mice. Nat Med 16, 313–318 (2010). https://doi.org/10.1038/nm.2101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2101

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research