Characteristics of Heart Failure With Preserved Ejection Fraction Across the Range of Left Ventricular Ejection Fraction

Circulation. 2022 Aug 16;146(7):506-518. doi: 10.1161/CIRCULATIONAHA.122.059280. Epub 2022 Jul 8.

Abstract

Background: Recent trial data suggest that stratification of patients with heart failure with preserved ejection fraction (HFpEF) according to left ventricular ejection fraction (LVEF) provides a means for dissecting different treatment responses. However, the differential pathophysiologic considerations have rarely been described.

Methods: This prospective, single-center study analyzed consecutive symptomatic patients with HFpEF diagnosed according to the 2016 European Society of Cardiology heart failure guidelines. Patients were grouped into LVEF 50% to 60% and LVEF >60% cohorts. All patients underwent cardiac magnetic resonance imaging. Transfemoral cardiac catheterization was performed to derive load-dependent and load-independent left ventricular (LV) properties on pressure-volume loop analyses.

Results: Fifty-six patients with HFpEF were enrolled and divided into LVEF 50% to 60% (n=21) and LVEF >60% (n=35) cohorts. On cardiac magnetic resonance imaging, the LVEF >60% cohort showed lower LV end-diastolic volumes (P=0.019) and end-systolic volumes (P=0.001) than the LVEF 50% to 60% cohort; stroke volume (P=0.821) did not differ between the cohorts. Extracellular volume fraction was higher in the LVEF 50% to 60% cohort than in the LVEF >60% cohort (0.332 versus 0.309; P=0.018). Pressure-volume loop analyses demonstrated higher baseline LV contractility (end-systolic elastance, 1.85 vs 1.33 mm Hg/mL; P<0.001) and passive diastolic stiffness (β constant, 0.032 versus 0.018; P=0.004) in the LVEF >60% cohort. Ventriculo-arterial coupling (end-systolic elastance/arterial elastance) at rest was in the range of optimized stroke work in the LVEF >60% cohort but was impaired in the LVEF 50% to 60% cohort (1.01 versus 0.80; P=0.005). During handgrip exercise, patients with LVEF >60% had higher increases in end-systolic elastance (1.85 versus 0.82 mm Hg/mL; P=0.023), attenuated increases in indexed end-systolic volume (-1 versus 7 mL/m²; P<0.004), and more exaggerated increases in LV filling pressures (8 vs 5 mm Hg; P=0.023). LV stroke volume decreased in the LVEF >60% cohort (P=0.007) under exertion.

Conclusions: Patients with HFpEF in whom LVEF ranged from 50% to 60% demonstrated reduced contractility, impaired ventriculo-arterial coupling, and higher extracellular volume fraction. In contrast, patients with HFpEF and a LVEF >60% demonstrated a hypercontractile state with excessive LV afterload and diminished preload reserve. A LVEF-based stratification of patients with HFpEF identified distinct morphologic and pathophysiologic subphenotypes.

Keywords: fibrosis; heart failure, diastolic; hemodynamics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hand Strength / physiology
  • Heart Failure* / diagnostic imaging
  • Heart Failure* / therapy
  • Humans
  • Prospective Studies
  • Stroke Volume / physiology
  • Ventricular Function, Left* / physiology