Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the gut and tumor microbiota in cancer

Subjects

Abstract

Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously—hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient’s microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hallmarks of the impact of the gut microbiome on immunity, health and disease.
Fig. 2: Gut oncomicrobiome signatures associated with cancer diagnosis or response to ICB.
Fig. 3: Hallmarks of the impact of tissue-based and tumor-based microorganisms in cancer.
Fig. 4: Personalized approaches incorporate microbiota-centered interventions: a forward-looking view.

Similar content being viewed by others

References

  1. Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Dismukes, G. C. et al. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 98, 2170–2175 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fullerton, K. M. et al. Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin. Nat. Geosci. 14, 301–306 (2021).

    Article  CAS  Google Scholar 

  4. Friedrich, M. J. Genomes of microbes inhabiting the body offer clues to human health and disease. J. Am. Med. Assoc. 309, 1447–1449 (2013).

    Article  CAS  Google Scholar 

  5. Neish, A. S. Microbes in gastrointestinal health and disease. Gastroenterology 136, 65–80 (2009).

    Article  PubMed  Google Scholar 

  6. Young, V. B. The role of the microbiome in human health and disease: an introduction for clinicians. Br. Med. J. 356, j831 (2017).

    Article  Google Scholar 

  7. Barrett, K. E. & Wu, G. D. Influence of the microbiota on host physiology—moving beyond the gut. J. Physiol. 595, 433–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R. & Blaser, M. J. Role of the microbiome in human development. Gut 68, 1108–1114 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Weber, J. S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Overman, M. J. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 36, 773–779 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gide, T. N., Wilmott, J. S., Scolyer, R. A. & Long, G. V. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin. Cancer Res. 24, 1260–1270 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Brahmer, J. R. et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC). J. Immunother. Cancer 6, 75 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Fehrenbacher, L. et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387, 1837–1846 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 127, 2930–2940 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD-1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bodor, J. N., Boumber, Y. & Borghaei, H. Biomarkers for immune checkpoint inhibition in non-small-cell lung cancer (NSCLC). Cancer 126, 260–270 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Dong, Z. Y. et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 23, 3012–3024 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Yonekura, S. et al. Cancer induces a stress ileopathy depending on B-adrenergic receptors and promoting dysbiosis that contribute to carcinogenesis. Cancer Discov. 12, 1128–1151 (2022).

    Article  PubMed  Google Scholar 

  28. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, D. D. et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 27, 333–343 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Blake, S. J. et al. The immunotoxicity, but not anti-tumor efficacy, of anti-CD40 and anti-CD137 immunotherapies is dependent on the gut microbiota. Cell Rep. Med 2, 100464 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cogdill, A. P., Gaudreau, P. O., Arora, R., Gopalakrishnan, V. & Wargo, J. A. The impact of intratumoral and gastrointestinal microbiota on systemic cancer therapy. Trends Immunol. 39, 900–920 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Heymann, C. J. F., Bard, J. M., Heymann, M. F., Heymann, D. & Bobin-Dubigeon, C. The intratumoral microbiome: characterization methods and functional impact. Cancer Lett. 522, 63–79 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liou, J.-M. et al. Screening and eradication of Helicobacter pylori for gastric cancer prevention: the Taipei global consensus. Gut 69, 2093–2112 (2020).

    Article  PubMed  Google Scholar 

  39. Cao, Y. EBV-based cancer prevention and therapy in nasopharyngeal carcinoma. NPJ Precis. Oncol. 1, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lei, J. et al. HPV vaccination and the risk of invasive cervical cancer. N. Engl. J. Med. 383, 1340–1348 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Chang, M. H. et al. Prevention of hepatocellular carcinoma by universal vaccination against hepatitis B virus: the effect and problems. Clin. Cancer Res. 11, 7953–7957 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Knippel, R. J., Drewes, J. L. & Sears, C. L. The cancer microbiome: recent highlights and knowledge gaps. Cancer Discov. 11, 2378–2395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Derosa, L. et al. Microbiota-centered interventions: the next breakthrough in immuno-oncology? Cancer Discov. 11, 2396–2412 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Roberti, M. P. et al. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat. Med. 26, 919–931 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Goubet, A. G. et al. Multifaceted modes of action of the anticancer probiotic Enterococcus hirae. Cell Death Differ. 28, 2276–2295 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Griffin, M. E. et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science 373, 1040–1046 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Yoon, H. S. et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 6, 563–573 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Grajeda-Iglesias, C. et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging 13, 6375–6405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bessell, C. A. et al. Commensal bacteria stimulate antitumor responses via T cell cross-reactivity. JCI Insight 5, e135597 (2020).

  59. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. He, Y. et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33, 988–1000 (2021).

  61. Bultman, S. J. Molecular pathways: gene–environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin. Cancer Res. 20, 799–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Belcheva, A. et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158, 288–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, K. et al. Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Mol. Med. Rep. 20, 1569–1574 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bindels, L. B. et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer 107, 1337–1344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yan, A. et al. Transformation of the anticancer drug doxorubicin in the human gut microbiome. ACS Infect. Dis. 4, 68–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Westman, E. L. et al. Bacterial inactivation of the anticancer drug doxorubicin. Chem. Biol. 19, 1255–1264 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Ruf, B. et al. Activating mucosal-associated Invariant T cells induces a broad antitumor response. Cancer Immunol. Res. 9, 1024–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Legoux, F. et al. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366, 494–499 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Pernigoni, N. et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 374, 216–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Fuhrman, B. J. et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 99, 4632–4640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Flores, R. et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J. Transl. Med. 10, 253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bauer, H., Horowitz, R. E., Levenson, S. M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Studies on germ-free mice. Am. J. Pathol. 42, 471–483 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pabst, O. et al. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J. Immunol. 177, 6824–6832 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kamada, N., Seo, S. U., Chen, G. Y. & Nunez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huhta, H. et al. Toll-like receptors 1, 2, 4 and 6 in esophageal epithelium, Barrett’s esophagus, dysplasia and adenocarcinoma. Oncotarget 7, 23658–23667 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ge, Y. et al. Gut microbiota influence tumor development and alter interactions with the human immune system. J. Exp. Clin. Cancer Res. 40, 42 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184, 5338–5356 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, G. Y., Shaw, M. H., Redondo, G. & Nunez, G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 68, 10060–10067 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Derosa, L. et al. Impact of antibiotics on outcome in patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors. J. Clin. Oncol. 35, 462–462 (2017).

    Article  Google Scholar 

  88. Huemer, F. et al. Association between antibiotics use and outcome in patients with NSCLC treated with immunotherapeutics. Ann. Oncol. 30, 652–653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Khan, U. et al. Impact of use of antibiotics on response to immune checkpoint inhibitors and tumor microenvironment. Am. J. Clin. Oncol. 44, 247–253 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Serpas, V. et al. Impact of antibiotic exposure on the efficacy of immune checkpoint blockade in MSI-H metastatic CRC. J. Clin. Oncol. 38, 161–161 (2020).

    Article  Google Scholar 

  91. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. https://doi.org/10.1038/s41591-022-01695-5 (2022).

  92. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Hakozaki, T. et al. The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-small-cell lung cancer. Cancer Immunol. Res. 8, 1243–1250 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Cascone, T. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nat. Med. 27, 504–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin, Y. et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J. Thorac. Oncol. 14, 1378–1389 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Derosa, L. et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur. Urol. 78, 195–206 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Salgia, N. J. et al. Stool microbiome profiling of patients with metastatic renal cell carcinoma receiving anti-PD-1 immune checkpoint inhibitors. Eur. Urol. 78, 498–502 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Mao, J. et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. J. Immunother. Cancer 9, e003334 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Peng, Z. et al. The gut microbiome is associated with clinical response to anti-PD-1/PD-L1 immunotherapy in gastrointestinal cancer. Cancer Immunol. Res. 8, 1251–1261 (2020).

    Article  PubMed  Google Scholar 

  100. Zheng, Y. et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J. Immunother. Cancer 7, 193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gharaibeh, R. Z. & Jobin, C. Microbiota and cancer immunotherapy: in search of microbial signals. Gut 68, 385–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Mitra, A. et al. Microbial diversity and composition is associated with patient-reported toxicity during chemoradiation therapy for cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 107, 163–171 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wang, A. et al. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study. PLoS ONE 10, e0126312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Biagi, E. et al. Early gut microbiota signature of aGvHD in children given allogeneic hematopoietic cell transplantation for hematological disorders. BMC Med. Genomics 12, 49 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Biagi, E. et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transplant. 50, 992–998 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Jenq, R. R. et al. Intestinal blautia is associated with reduced death from graft-versus-host disease. Biol. Blood Marrow Transplant. 21, 1373–1383 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Holler, E. et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol. Blood Marrow Transplant. 20, 640–645 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chang, C. W. et al. Fecal microbiota transplantation prevents intestinal injury, upregulation of Toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int. J. Mol. Sci. 21, 386 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  109. Cui, M. et al. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol. Med. 9, 448–461 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xiao, H. W. et al. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein. Microbiome 8, 69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, F., Yin, Q., Chen, L. & Davis, M. M. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc. Natl Acad. Sci. USA 115, 157–161 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Budynek, P., Dabrowska, K., Skaradzinski, G. & Gorski, A. Bacteriophages and cancer. Arch. Microbiol. 192, 315–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Rasmussen, T. S. et al. Bacteriophage-mediated manipulation of the gut microbiome—promises and presents limitations. FEMS Microbiol. Rev. 44, 507–521 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Durazzi, F. et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci. Rep. 11, 3030 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang, H. et al. Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med. 12, 102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat. Biotechnol. 38, 701–707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mallick, H. et al. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat. Commun. 10, 3136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Garmaeva, S. et al. Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol. 17, 84 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Vemuri, R., Shankar, E. M., Chieppa, M., Eri, R. & Kavanagh, K. Beyond just bacteria: functional biomes in the gut ecosystem including virome, mycobiome, archaeome and helminths. Microorganisms 8, 483 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  122. O’Dwyer, D. N., Dickson, R. P. & Moore, B. B. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J. Immunol. 196, 4839–4847 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Dickson, R. P. & Huffnagle, G. B. The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog. 11, e1004923 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schommer, N. N. & Gallo, R. L. Structure and function of the human skin microbiome. Trends Microbiol. 21, 660–668 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ma, B., Forney, L. J. & Ravel, J. Vaginal microbiome: rethinking health and disease. Annu. Rev. Microbiol. 66, 371–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pflughoeft, K. J. & Versalovic, J. Human microbiome in health and disease. Annu. Rev. Pathol. 7, 99–122 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Besser, J. et al. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin. Microbiol. Infect. 24, 335–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Gosiewski, T. et al. Comprehensive detection and identification of bacterial DNA in the blood of patients with sepsis and healthy volunteers using next-generation sequencing method-the observation of DNAemia. Eur. J. Clin. Microbiol Infect. Dis. 36, 329–336 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Laurence, M., Hatzis, C. & Brash, D. E. J. P. O. Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS ONE 9, e97876 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Glassing, A., Dowd, S. E., Galandiuk, S., Davis, B. & Chiodini, R. J. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 8, 24 (2016).

  132. Colgan, D. F. & Manley, J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755–2766 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Barrett, M., Hand, C. K., Shanahan, F., Murphy, T. & O’Toole, P. W. Mutagenesis by microbe: the role of the microbiota in shaping the cancer genome. Trends Cancer 6, 277–287 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. He, Z. et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68, 289–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gonzalez-Cao, M. et al. Human endogenous retroviruses and cancer. Cancer Biol. Med. 13, 483–488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cherkasova, E. et al. Detection of an immunogenic HERV-E envelope with selective expression in clear cell kidney cancer. Cancer Res. 76, 2177–2185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kraus, B. et al. Vaccination directed against the human endogenous retrovirus-K envelope protein inhibits tumor growth in a murine model system. PLoS ONE 8, e72756 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Suh, Y., Amelio, I., Guerrero Urbano, T. & Tavassoli, M. Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death Dis. 5, e1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yin, H., Qu, J., Peng, Q. & Gan, R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med. Microbiol. Immunol. 208, 573–583 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Cheng, A. S. et al. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology 144, 122–133 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Inamura, K. Colorectal cancers: an update on their molecular pathology. Cancers 10, 1390–1415 (2018).

    Google Scholar 

  145. Kopp, M., Durr, K., Steigleder, M., Clavel, T. & Rychlik, M. Development of stable isotope dilution assays for the quantitation of intra- and extracellular folate patterns of Bifidobacterium adolescentis. J. Chromatogr. A 1469, 48–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Lee, J. A. et al. Differential immune microenvironmental features of microsatellite-unstable colorectal cancers according to Fusobacterium nucleatum status. Cancer Immunol. Immunother. 70, 47–59 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Mima, K. et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 1, 653–661 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lopes, A. et al. Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. Int. J. Cancer 146, 3147–3159 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Ling, Z. et al. Regulatory T cells and plasmacytoid dendritic cells within the tumor microenvironment in gastric cancer are correlated with gastric microbiota dysbiosis: a preliminary study. Front. Immunol. 10, 533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen, T. et al. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol. Immunother. 67, 1635–1646 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Deng, Y. et al. TLR1/TLR2 signaling blocks the suppression of monocytic myeloid-derived suppressor cell by promoting its differentiation into M1-type macrophage. Mol. Immunol. 112, 266–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Kim, J. H., Kordahi, M. C., Chac, D. & DePaolo, R. W. Toll-like receptor-6 signaling prevents inflammation and impacts composition of the microbiota during inflammation-induced colorectal cancer. Cancer Prev. Res. 13, 25–40 (2020).

    Article  CAS  Google Scholar 

  153. Hoste, E. et al. Innate sensing of microbial products promotes wound-induced skin cancer. Nat. Commun. 6, 5932 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Shi, Y. et al. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J. Exp. Med. 217, e20192282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Maisonneuve, C. et al. Nod1 promotes colorectal carcinogenesis by regulating the immunosuppressive functions of tumor-infiltrating myeloid cells. Cell Rep. 34, 108677 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. da Silva Correia, J. et al. Nod1-dependent control of tumor growth. Proc. Natl Acad. Sci. USA 103, 1840–1845 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nguyen, T. T. et al. Lithocholic acid stimulates IL-8 expression in human colorectal cancer cells via activation of Erk1/2 MAPK and suppression of STAT3 activity. J. Cell. Biochem. 118, 2958–2967 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Baek, M. K. et al. Lithocholic acid upregulates uPAR and cell invasiveness via MAPK and AP-1 signaling in colon cancer cells. Cancer Lett. 290, 123–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Flynn, C. et al. Deoxycholic acid promotes the growth of colonic aberrant crypt foci. Mol. Carcinog. 46, 60–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Yao, L. et al. Acetate promotes SNAI1 expression by ACSS2-mediated histone acetylation under glucose limitation in renal cell carcinoma cell. Biosci. Rep. 40, BSR20200382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rojo, D. et al. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases. Sci. Rep. 5, 8310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl Acad. Sci. USA 107, 11537–11542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jinadasa, R. N., Bloom, S. E., Weiss, R. S. & Duhamel, G. E. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiol. 157, 1851–1875 (2011).

    Article  CAS  Google Scholar 

  166. Maddocks, O. D., Scanlon, K. M. & Donnenberg, M. S. An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. mBio 4, e00152–00113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Santos, J. C. et al. Helicobacter pylori infection modulates the expression of miRNAs associated with DNA mismatch repair pathway. Mol. Carcinog. 56, 1372–1379 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Kim, J. J. et al. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology 123, 542–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Chung, L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23, 203–214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang, F., Meng, W., Wang, B. & Qiao, L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 345, 196–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rossi, T. et al. Microbiota-derived metabolites in tumor progression and metastasis. Int. J. Mol. Sci. 21, 5786 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  173. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Vitiello, G. A., Cohen, D. J. & Miller, G. Harnessing the microbiome for pancreatic cancer immunotherapy. Trends Cancer 5, 670–676 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Das, S., Shapiro, B., Vucic, E. A., Vogt, S. & Bar-Sagi, D. Tumor cell-derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer. Cancer Res. 80, 1088–1101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cao, S. et al. Dynamic host immune response in virus-associated cancers. Commun. Biol. 2, 109 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Overacre-Delgoffe, A. E. et al. Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor immunity against colorectal cancer. Immunity 54, 2812–2824 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Wieland, A. et al. Defining HPV-specific B cell responses in patients with head and neck cancer. Nature 597, 274–278 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Cillo, A. R. et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity 52, 183–199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. McQuade, J. L., Daniel, C. R., Helmink, B. A. & Wargo, J. A. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 20, e77–e91 (2019).

    Article  PubMed  Google Scholar 

  184. Maleki, S. et al. P864 Combination of fecal microbiota transplantation from healthy donors with anti-PD1 immunotherapy in treatment-naïve advanced or metastatic melanoma patients. J. Immunother. Cancer 8, A11–A12 (2020).

    Google Scholar 

  185. Zhao, Y. et al. Safety and efficacy of fecal microbiota transplantation for grade IV steroid refractory GI-GvHD patients: interim results from FMT2017002 trial. Front. Immunol. 12, 678476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Giles, E. M., D’Adamo, G. L. & Forster, S. C. The future of faecal transplants. Nat. Rev. Microbiol. 17, 719 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Dizman, N. et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. https://doi.org/10.1038/s41591-022-01694-6 (2022).

  188. Laute-Caly, D. L. et al. The flagellin of candidate live biotherapeutic Enterococcus gallinarum MRx0518 is a potent immunostimulant. Sci. Rep. 9, 801 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Lemon, K. P., Armitage, G. C., Relman, D. A. & Fischbach, M. A. Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 4, 137rv135 (2012).

    Article  CAS  Google Scholar 

  192. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Pflug, N. et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology 5, e1150399 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Weber, D. et al. Microbiota disruption induced by early use of broad-spectrum antibiotics is an independent risk factor of outcome after allogeneic stem cell transplantation. Biol. Blood Marrow Transplant. 23, 845–852 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nenclares, P. et al. Impact of antibiotic use during curative treatment of locally advanced head and neck cancers with chemotherapy and radiotherapy. Eur. J. Cancer 131, 9–15 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Selle, K. et al. In vivo targeting of Clostridioides difficile using phage-delivered CRISPR–Cas3 antimicrobials. mBio 11, e00019–e00020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Chen, P. B. et al. Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nat. Biotechnol. 38, 1288–1297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kroemer, G., Lopez-Otin, C., Madeo, F. & de Cabo, R. Carbotoxicity-noxious effects of carbohydrates. Cell 175, 605–614 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Buque, A. et al. Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat. Commun. 11, 3819 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ferrere, G. et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight 6, e145207 (2021).

  203. Levesque, S. et al. A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunology 8, e1657375 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pomatto-Watson, L. C. D. et al. Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition. Nat. Commun. 12, 6201 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Wang, Y. et al. NAD+ supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated T cells. Cell Rep. 36, 109516 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Baruch, E. N., Wang, J. & Wargo, J. A. Gut microbiota and antitumor immunity: potential mechanisms for clinical effect. Cancer Immunol. Res. 9, 365–370 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Becerril-Alarcon, Y. et al. Inulin supplementation reduces systolic blood pressure in women with breast cancer undergoing neoadjuvant chemotherapy. Cardiovasc. Ther. 2019, 5707150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Fogliano, V. et al. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol. Nutr. Food Res. 55, S44–S55 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Scott, K. P., Martin, J. C., Duncan, S. H. & Flint, H. J. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol. Ecol. 87, 30–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    Article  PubMed  Google Scholar 

  212. Jessy, T. Immunity over inability: the spontaneous regression of cancer. J. Nat. Sci. Biol. Med. 2, 43–49 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Kucerova, P. & Cervinkova, M. Spontaneous regression of tumour and the role of microbial infection–possibilities for cancer treatment. Anticancer Drugs 27, 269–277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Coley, W. B. The treatment of inoperable sarcoma with the’mixed toxins of erysipelas and bacillus prodigiosus.: immediate and final results in one hundred and forty cases. Proc. R. Soc. Med. 31, 456–465 (1898).

    Google Scholar 

  215. Rook, G. Tumours and Coley’s toxins. Nature 357, 545 (1992).

    Article  CAS  PubMed  Google Scholar 

  216. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Roberts, N. J. et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci. Transl. Med. 6, 249ra111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Kelly, C. M. et al. Objective response rate among patients with locally advanced or metastatic sarcoma treated with talimogene laherparepvec in combination with pembrolizumab: a phase 2 clinical trial. JAMA Oncol. 6, 402–408 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Rha, S. Y. et al. Abstract CT121: a phase Ib study of recombinant vaccinia virus in combination with immune checkpoint inhibition (ICI) in advanced renal cell carcinoma (RCC). Cancer Res. 80, CT121–CT121 (2020).

    Google Scholar 

  220. Krupar, R. et al. Abstract LB-095: HPV E7 antigen-expressing listeria-based immunotherapy (ADXS11-001) prior to robotic surgery for HPV-positive oropharyngeal cancer enhances HPV-specific T cell immunity. Cancer Res. 76, LB-095–LB-095 (2016).

    Google Scholar 

  221. Safran, H. et al. ADXS11-001 Lm-LLO immunotherapy, mitomycin, 5-fluorouracil (5-FU) and intensity-modulated radiation therapy (IMRT) for anal cancer. J. Clin. Oncol. 35, e15072–e15072 (2017).

    Article  Google Scholar 

  222. van Zyl, D. G., Mautner, J. & Delecluse, H. J. Progress in EBV vaccines. Front Oncol. 9, 104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Sedighi, M. et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 8, 3167–3181 (2019).

    PubMed  PubMed Central  Google Scholar 

  224. Giannakis, M. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857–865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Chen, P.-L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bronkhorst, A. J., Ungerer, V. & Holdenrieder, S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol. Detect. Quantif. 17, 100087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Halley, A. et al. The role of the microbiome in cancer and therapy efficacy: focus on lung cancer. Anticancer Res. 40, 4807–4818 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. Oliva, M. et al. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann. Oncol. 30, 57–67 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Temraz, S. et al. Gut microbiome: a promising biomarker for immunotherapy in colorectal cancer. Int. J. Mol. Sci. 20, 4155 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  232. van Poelgeest, M. I. et al. Potential use of lymph node-derived HPV-specific T cells for adoptive cell therapy of cervical cancer. Cancer Immunol. Immunother. 65, 1451–1463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Menzel, A. et al. Common and novel markers for measuring inflammation and oxidative stress ex vivo in research and clinical practice—which to use regarding disease outcomes? Antioxidants 10, 414 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Howard, R., Kanetsky, P. A. & Egan, K. M. Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer. Sci. Rep. 9, 19673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Cordoba, R., Eyre, T. A., Klepin, H. D., Wildes, T. M. & Goede, V. A comprehensive approach to therapy of haematological malignancies in older patients. Lancet Haematol. 8, e840–e852 (2021).

    Article  PubMed  Google Scholar 

  236. Zhang, H. et al. Novel immune infiltrating cell signature based on cell pair algorithm is a prognostic marker in cancer. Front. Immunol. 12, 694490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Nixon, A. B. et al. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential? J. Immunother. Cancer 7, 325 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Verma, M., Hontecillas, R., Tubau-Juni, N., Abedi, V. & Bassaganya-Riera, J. Challenges in personalized nutrition and health. Front Nutr. 5, 117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).

    Article  Google Scholar 

  240. Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Cammarota, G. et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 635–648 (2020).

    Article  PubMed  Google Scholar 

  242. Zeng, T., Yu, X. & Chen, Z. Applying artificial intelligence in the microbiome for gastrointestinal diseases: a review. J. Gastroenterol. Hepatol. 36, 832–840 (2021).

    Article  PubMed  Google Scholar 

  243. Stylianopoulos, T., Munn, L. L. & Jain, R. K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer 4, 292–319 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bucci, V. & Xavier, J. B. Towards predictive models of the human gut microbiome. J. Mol. Biol. 426, 3907–3916 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Karlsson, F. H., Nookaew, I., Petranovic, D. & Nielsen, J. Prospects for systems biology and modeling of the gut microbiome. Trends Biotechnol. 29, 251–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  246. Dourson, M. et al. The future of uncertainty factors with in vitro studies using human cells. Toxicol. Sci. 186, 12–17 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. G. Witt, S. Cass, R. Traweek and E. Baruch for their thoughtful input and assistance with preparation of this manuscript. L.Z. and G.K. are supported by Seerave Foundation, the RHU Immunolife, ANR Ileobiome (19-CE15-0029-01), the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR)—Projets blancs; AMMICa (US23/CNRS UMS3655); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); Gustave Roussy Odyssea, the European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); a Cancer Research ASPIRE Award from the Mark Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Université de Paris, ANR-18-IDEX-0001. E.M.P. was supported by the CPRIT Training Award (RP210028).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the design, preparation and review of this manuscript. J.A.W. supervised and oversaw all aspects of this work.

Corresponding author

Correspondence to Jennifer A. Wargo.

Ethics declarations

Competing interests

J.A.W. is an inventor on a US patent application (PCT/US17/53.717); reports compensation for speaker’s bureau and honoraria from Imedex, Dava Oncology, Omniprex, Illumina, Gilead, PeerView, MedImmune and Bristol-Myers Squibb; serves as a consultant/advisory board member for Roche/Genentech, Novartis, AstraZeneca, GlaxoSmithKline, Bristol-Myers Squibb, Merck, Biothera Pharmaceuticals and Micronoma. J.A.W. holds stock options from Micronoma. L.Z. received research contracts from Kaleido, Innovate Pharma and Pilege. G.K. had a research contract with Kaleido. L.Z is and G.K. was among the scientific cofounders of EverImmune, a biotech company devoted to the use of commensal bacteria for the treatment of cancers.

Peer review

Peer review information

Nature Medicine thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Supplementary Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, E.M., Chelvanambi, M., Bhutiani, N. et al. Targeting the gut and tumor microbiota in cancer. Nat Med 28, 690–703 (2022). https://doi.org/10.1038/s41591-022-01779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-022-01779-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer