Skip to main content

Advertisement

Log in

A systematic review and meta-analysis of the cerebrovascular event incidence after transcatheter aortic valve implantation

  • Review
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

A Correction to this article was published on 08 April 2022

This article has been updated

Abstract

Objective

Periinterventional stroke is one of the most feared potential complication, among patients treated with transcatheter aortic valve implantation (TAVI). The purpose of this review was to investigate the incidence of cerebrovascular events and the influence of postinterventional neurologic check-up in patients undergoing TAVI.

Methods

A systematic review and meta-analysis were conducted according to the PRISMA guideline. Three separate electronic searches of the public domains Medline and Clinicaltrials.gov were performed to identify the 30-day incidence of stroke within randomized controlled trials (RCTs) and registries for patients undergoing a TAVI procedure. A meta-analysis was conducted to evaluate the 30-day incidence of stroke within RCTs. Furthermore, we pooled the RCTs in which a scheduled neurological check-up was conducted or not to investigate the effect of this intervention.

Results

Twenty-three studies including 399,491 TAVI patients were included, 6370 from RCTs, 833 from cerebral-embolic protection device RCTs and 392,288 were adopted from registries. The mean 30-day incidence of stroke among all reviewed studies was 2.33%. In RCTs evaluating TAVI the pooled stroke incidence was 3.86%, among RCTs focused CEP the incidence was 6.36% and in registries the incidence was 2.29%. Ten RCTs conducted scheduled neurological check-ups, the incidence in these was 4.03% and among the remaining RCTs it was 2.47%. In the meta-analysis, the pooled 30-day stroke incidence was 3.61% (95% CI 2.57–4.79%).

Conclusion

This systematic review demonstrates that the stroke incidences following TAVI differ strongly according to the study design and neurological follow-up. Intense neurological testing increases the incidence of a stroke after TAVI.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2:
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Stolker JM, Spertus JA, Cohen DJ, Jones PG, Jain KK, Bamberger E et al (2014) Rethinking composite end points in clinical trials insights from patients and trialists. Circulation 130:1254–1261

    Article  PubMed  PubMed Central  Google Scholar 

  2. Habertheuer A, Gleason TG, Kilic A, Schindler J, Kliner D, Bianco V et al (2020) Impact of perioperative stroke on midterm outcomes after transcatheter aortic valve replacement. Ann Thorac Surg 110(4):1294–1301

    Article  PubMed  Google Scholar 

  3. Arnold SV, Zhang Y, Baron SJ, McAndrew TC, Alu MC, Kodali SK et al (2019) Impact of short-term complications on mortality and quality of life after transcatheter aortic valve replacement. JACC Cardiovasc Interv 12:362–369

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mastoris I, Schoos MM, Dangas GD, Mehran R (2014) Stroke after transcatheter aortic valve replacement: incidence, risk factors, prognosis, and preventive strategies. Clin Cardiol 37:756–764

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huded CP, Tuzcu EM, Krishnaswamy A, Mick SL, Kleiman NS, Svensson LG et al (2019) Association between transcatheter aortic valve replacement and early postprocedural stroke. JAMA 321(23):2306–2315. https://doi.org/10.1001/jama.2019.7525

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salemi A, Sedrakyan A, Mao J, Elmously A, Wijeysundera H, Tam DY et al (2019) Individual operator experience and outcomes in transcatheter aortic valve replacement. JACC Cardiovasc Interv 12:90–97

    Article  PubMed  Google Scholar 

  7. Pilgrim T, Lee JKT, O’Sullivan CJ, Stortecky S, Ariotti S, Franzone A (2018) Early versus newer generation devices for transcatheter aortic valve implantation in routine clinical practice: a propensity score matched analysis. Open Heart 5:e000695

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thourani VH, O’Brien SM, Kelly JJ, Cohen DJ, Peterson ED, Mack MJ et al (2019) Development and application of a risk prediction model for in-hospital stroke after transcatheter aortic valve replacement: a report from the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. Ann Thorac Surg 107:1097–1103

    Article  PubMed  Google Scholar 

  9. Kapadia SR, Kodali S, Makkar R, Mehran R, Lazar RM, Zivadinov R et al (2017) Protection against cerebral embolism during transcatheter aortic valve replacement. J Am Coll Cardiol 69:367–377

    Article  PubMed  Google Scholar 

  10. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  11. Feldman TE, Reardon MJ, Rajagopal V, Makkar RR, Bajwa TK, Kleiman NS et al (2018) Effect of mechanically expanded vs self-expanding transcatheter aortic valve replacement on mortality and major adverse clinical events in high-risk patients with aortic stenosis: the REPRISE III randomized clinical trial. JAMA 319(1):27–37

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M et al (2019) Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 380:1695–1705

    Article  PubMed  Google Scholar 

  13. Abdel-Wahab M, Mehilli J, Frerker C, Neumann FJ, Kurz T, Tölg R et al (2014) Comparison of balloon-expandable vs self-expandable valves in patients undergoing transcatheter aortic valve replacement: The CHOICE randomized clinical trial. JAMA J Am Med Assoc 311:1503–1416

    Article  Google Scholar 

  14. Popma JJ, Deeb GM, Yakubov SJ, Mumtaz M, Gada H, O’Hair D et al (2019) Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med 380(18):1706–1715

    Article  PubMed  Google Scholar 

  15. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK et al (2016) Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med 374(17):1609–1620

    Article  CAS  PubMed  Google Scholar 

  16. Reardon MJ, Van Mieghem NM, Popma JJ, Kleiman NS, Søndergaard L, Mumtaz M et al (2017) Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med 374:1321–1331

    Article  PubMed  Google Scholar 

  17. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG et al (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364:2187–2198

    Article  CAS  PubMed  Google Scholar 

  18. Adams DH, Popma JJ, Reardon MJ, Yakubov SJ, Coselli JS, Deeb GM et al (2014) Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 370:1790–1798

    Article  CAS  PubMed  Google Scholar 

  19. Lanz J, Kim WK, Walther T, Burgdorf C, Möllmann H, Linke A et al (2019) Safety and efficacy of a self-expanding versus a balloon-expandable bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: a randomised non-inferiority trial. Lancet 394:1619–1628

    Article  PubMed  Google Scholar 

  20. Makkar RR, Cheng W, Waksman R, Satler LF, Chakravarty T, Groh M et al (2020) Self-expanding intra-annular versus commercially available transcatheter heart valves in high and extreme risk patients with severe aortic stenosis (PORTICO IDE): a randomised, controlled, non-inferiority trial. Lancet (London, England) 396(10252):669–683

    Article  Google Scholar 

  21. Dangas GD, Lefèvre T, Kupatt C, Tchetche D, Schäfer U, Dumonteil N et al (2015) Bivalirudin versus heparin anticoagulation in transcatheter aortic valve replacement the randomized BRAVO-3 trial. J Am Coll Cardiol 66:2860–2868

    Article  CAS  PubMed  Google Scholar 

  22. Haussig S, Mangner N, Dwyer MG, Lehmkuhl L, Lücke C, Woitek F et al (2016) Effect of a cerebral protection device on brain lesions following transcatheter aortic valve implantation in patients with severe aortic stenosis: the CLEAN-TAVI randomized clinical trial. JAMA J Am Med Assoc 316:592–601

    Article  Google Scholar 

  23. Wendt D, Kleinbongard P, Knipp S, Al-Rashid F, Gedik N, El Chilali K et al (2015) Intraaortic protection from embolization in patients undergoing transaortic transcatheter aortic valve implantation. Ann Thorac Surg 100:686–691

    Article  PubMed  Google Scholar 

  24. Van Mieghem NM, Van Gils L, Ahmad H, Van Kesteren F, Van Der Werf HW, Brueren G et al (2016) Filter-based cerebral embolic protection with transcatheter aortic valve implantation: the randomised MISTRAL-C trial. EuroIntervention 12:499–507

    Article  PubMed  Google Scholar 

  25. Lansky AJ, Schofer J, Tchetche D, Stella P, Pietras CG, Parise H et al (2015) A prospective randomized evaluation of the TriGuardTM HDH embolic DEFLECTion device during transcatheter aortic valve implantation: results from the DEFLECT III trial. Eur Heart J 36:2070–2078

    Article  PubMed  Google Scholar 

  26. Nazif TM, Moses J, Sharma R, Dhoble A, Rovin J, Brown D et al (2021) Randomized evaluation of TriGuard 3 cerebral embolic protection after transcatheter aortic valve replacement: REFLECT II. JACC Cardiovasc Interv 14(5):515–527

    Article  PubMed  Google Scholar 

  27. Abdel-Wahab M, Fujita B, Frerker C, Bauer T, Beckmann A, Bekeredjian R et al (2020) Transcatheter versus rapid-deployment aortic valve replacement: a propensity-matched analysis from the German Aortic Valve Registry. JACC Cardiovasc Interv 13(22):2642–2654

    Article  PubMed  Google Scholar 

  28. Eggebrecht H, Bestehorn M, Haude M, Schmermund A, Bestehorn K, Voigtländer T et al (2016) Outcomes of transfemoral transcatheter aortic valve implantation at hospitals with and without on-site cardiac surgery department: Insights from the prospective German aortic valve replacement quality assurance registry (AQUA) in 17 919 patients. Eur Heart J 37:2240–2248

    Article  PubMed  Google Scholar 

  29. Doshi R, Shlofmitz E, Meraj P (2018) Comparison of outcomes and complications of transcatheter aortic valve implantation in women versus men (from the National Inpatient Sample). Am J Cardiol 121:73–77

    Article  PubMed  Google Scholar 

  30. Auffret V, Lefevre T, Van Belle E, Eltchaninoff H, Iung B, Koning R et al (2017) Temporal trends in transcatheter aortic valve replacement in France: FRANCE 2 to FRANCE TAVI. J Am Coll Cardiol 70:42–55

    Article  PubMed  Google Scholar 

  31. Carroll JD, Mack MJ, Vemulapalli S, Herrmann HC, Gleason TG, Hanzel G et al (2020) STS-ACC TVT Registry of transcatheter aortic valve replacement. J Am Coll Cardiol 76(21):2492–2516

    Article  CAS  PubMed  Google Scholar 

  32. Oettinger V, Kaier K, Heidt T, Hortmann M, Wolf D, Zirlik A et al (2020) Outcomes of transcatheter aortic valve implantations in high-volume or low-volume centres in Germany. Heart [Internet] 106(20):1604 LP–1608. Available from: http://heart.bmj.com/content/106/20/1604.abstract

  33. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK et al (2016) Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med 374:1609–1620

    Article  CAS  PubMed  Google Scholar 

  34. Madden NJ, Calligaro KD, Zheng H, Troutman DA, Dougherty MJ (2019) Outcomes of brachial artery access for endovascular interventions. Ann Vasc Surg 56:81–86

    Article  PubMed  Google Scholar 

  35. Eggebrecht H, Schmermund A, Voigtländer T, Kahlert P, Erbel R, Mehta RH (2012) Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention 8:129–138

    Article  PubMed  Google Scholar 

  36. Vlastra W, Jimenez-Quevedo P, Tchétché D, Chandrasekhar J, De Brito FS, Barbanti M et al (2019) Predictors, incidence, and outcomes of patients undergoing transfemoral transcatheter aortic valve implantation complicated by stroke from the center-collaboration. Circ Cardiovasc Interv 12(3):e007546

  37. Maier O, Bosbach G, Hellhammer K, Afzal S, Piayda K, Zeus T et al (2020) Stroke after transcatheter aortic valve implantation: new insights into risk prediction. Eur Heart J [Internet] 41(Supplement_2):ehaa946.2600. Available from: https://doi.org/10.1093/ehjci/ehaa946.2600

  38. Spaziano M, Chieffo A, Watanabe Y, Chandrasekhar J, Sartori S, Lefèvre T et al (2018) Computed tomography predictors of mortality, stroke and conduction disturbances in women undergoing TAVR: a sub-analysis of the WIN-TAVI registry. J Cardiovasc Comput Tomogr 12(4):338–343

    Article  PubMed  Google Scholar 

  39. Castelo A, Grazina A, Mendonca T, Rodrigues I, Vaz Ferreira V, Garcia Bras P et al (2021) Periprocedural and short-term stroke after transcatheter aortic valve implantation—what are the outcomes and how can we predict it. Eur Heart J 42(Supplement 1):ehab724.2168. https://doi.org/10.1093/eurheartj/ehab724.2168

    Article  Google Scholar 

  40. Messé SR, Acker MA, Kasner SE, Fanning M, Giovannetti T, Ratcliffe SJ et al (2014) Stroke after aortic valve surgery: results from a prospective cohort. Circulation 129:2253–2261

    Article  PubMed  PubMed Central  Google Scholar 

  41. Arts DGT, de Keizer NF, Scheffer G-J (2002) Defining and improving data quality in medical registries: a literature review, case study, and generic framework. J Am Med Inform Assoc 9(6):600–611. https://doi.org/10.1197/jamia.M1087

    Article  PubMed  PubMed Central  Google Scholar 

  42. Veen EJ, Janssen-Heijnen MLG, Bosma E, de Jongh MAC, Roukema JA (2012) The accuracy of complications documented in a prospective complication registry. J Surg Res 173(1):54–59

    Article  PubMed  Google Scholar 

  43. Goldberg SI, Niemierko A, Turchin A (2008) Analysis of data errors in clinical research databases. AMIA Annu Symp Proc AMIA Symp 2008:242–246

    Google Scholar 

  44. Kapadia S, Agarwal S, Miller DC, Webb JG, MacK M, Ellis S et al (2016) Insights into timing, risk factors, and outcomes of stroke and transient ischemic attack after transcatheter aortic valve replacement in the PARTNER trial (placement of aortic transcatheter valves). Circ Cardiovasc Interv 9(9):e002981

  45. Jørgensen HS, Kammersgaard LP, Nakayama H, Raaschou HO, Larsen K, Hübbe P et al (1999) Treatment and rehabilitation on a stroke unit improves 5-year survival: a community-based study. Stroke 30:930–933

    Article  PubMed  Google Scholar 

  46. Kapadia S PROTECTED TAVR: stroke PROTECTion with sentinel during transcatheter aortic valve replacement (PROTECTED TAVR) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT04149535

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Schmidt.

Additional information

The original online version of this article was revised: modifications have been made to the abstract, and to the sections ‘Results’ and ‘Discussion’. Full information regarding the corrections made can be found in the erratum/correction for this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meertens, M.M., Macherey, S., Asselberghs, S. et al. A systematic review and meta-analysis of the cerebrovascular event incidence after transcatheter aortic valve implantation. Clin Res Cardiol 111, 843–858 (2022). https://doi.org/10.1007/s00392-022-01997-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-022-01997-1

Keywords

Navigation