SIRT1 in the cardiomyocyte counteracts doxorubicin-induced cardiotoxicity via regulating histone H2AX

Cardiovasc Res. 2023 Jan 18;118(17):3360-3373. doi: 10.1093/cvr/cvac026.

Abstract

Aims: Cardiotoxicity by doxorubicin predicts worse prognosis of patients. Accumulation of damaged DNA has been implicated in doxorubicin-induced cardiotoxicity. SIRT1, an NAD+-dependent histone/protein deacetylase, protects cells by deacetylating target proteins. We investigated whether SIRT1 counteracts doxorubicin-induced cardiotoxicity by mediating Ser139 phosphorylation of histone H2AX, a critical signal of the DNA damage response.

Methods and results: Doxorubicin (5 mg/kg per week, x4) was administered to mice with intact SIRT1 (Sirt1f/f) and mice that lack SIRT1 activity in cardiomyocytes (Sirt1f/f;MHCcre/+). Reductions in left ventricular fractional shortening and ejection fraction by doxorubicin treatment were more severe in Sirt1f/f;MHCcre/+ than in Sirt1f/f. Myocardial expression level of type-B natriuretic peptide was 2.5-fold higher in Sirt1f/f;MHCcre/+ than in Sirt1f/f after doxorubicin treatment. Sirt1f/f;MHCcre/+ showed larger fibrotic areas and higher nitrotyrosine levels in the heart after doxorubicin treatment. Although doxorubicin-induced DNA damage evaluated by TUNEL staining was enhanced in Sirt1f/f;MHCcre/+, the myocardium from Sirt1f/f;MHCcre/+ showed blunted Ser139 phosphorylation of H2AX by doxorubicin treatment. In H9c2 cardiomyocytes, SIRT1 knockdown attenuated Ser139 phosphorylation of H2AX, increased DNA damage, and enhanced caspase-3 activation under doxorubicin treatment. Immunostaining revealed that acetylation level of H2AX at Lys5 was higher in hearts from Sirt1f/f;MHCcre/+. In H9c2 cells, acetyl-Lys5-H2AX level was increased by SIRT1 knockdown and reduced by SIRT1 overexpression. Ser139 phosphorylation in response to doxorubicin treatment was blunted in a mutant H2AX with substitution of Lys5 to Gln (K5Q) that mimics acetylated lysine compared with that in wild-type H2AX. Expression of K5Q-H2AX as well as S139A-H2AX, which cannot be phosphorylated at Ser139, augmented doxorubicin-induced caspase-3 activation. Treatment of mice with resveratrol, a SIRT1 activator, attenuated doxorubicin-induced cardiac dysfunction, which was associated with a reduction in acetyl-Lys5-H2AX level and a preserved phospho-Ser139-H2AX level.

Conclusion: These findings suggest that SIRT1 counteracts doxorubicin-induced cardiotoxicity by mediating H2AX phosphorylation through its deacetylation in cardiomyocytes.

Keywords: DNA damage response; Deacetylation; Doxorubicin cardiotoxicity; Histone H2AX; SIRT1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Cardiotoxicity / metabolism
  • Caspase 3 / metabolism
  • Doxorubicin / toxicity
  • Histones* / metabolism
  • Mice
  • Myocytes, Cardiac* / metabolism
  • Sirtuin 1 / genetics
  • Sirtuin 1 / metabolism

Substances

  • Histones
  • Caspase 3
  • Sirtuin 1
  • doxorubicin-DNA
  • Doxorubicin
  • Sirt1 protein, mouse
  • H2AX protein, mouse