Novel CALM3 Variant Causing Calmodulinopathy With Variable Expressivity in a 4-Generation Family

Circ Arrhythm Electrophysiol. 2022 Mar;15(3):e010572. doi: 10.1161/CIRCEP.121.010572. Epub 2022 Feb 28.

Abstract

Background: CaM (calmodulin), encoded by 3 separate genes (CALM1, CALM2, and CALM3), is a multifunctional Ca2+-binding protein involved in many signal transduction events including ion channel regulation. CaM variants may present with early-onset long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia, or sudden cardiac death. Most reported variants occurred de novo. We identified a novel CALM3 variant, p.Asn138Lys (N138K), in a 4-generation family segregating with LQTS. The aim of this study was to elucidate its pathogenicity and to compare it with that of p.D130G-CaM-a variant associated with a severe LQTS phenotype.

Methods: We performed whole exome sequencing for a large, 4-generation family affected by LQTS. To assess the effect of the detected CALM3 variant, the intrinsic Ca2+-binding affinity was measured by stoichiometric Ca2+ titrations and equilibrium titrations. L-type Ca2+ and slow delayed rectifier potassium currents (ICaL and IKs) were recorded by whole-cell patch-clamp. Cav1.2 and Kv7.1 membrane expression were determined by optical fluorescence assays.

Results: We identified 14 p.N138K-CaM carriers in a family where 2 sudden deaths occurred in children. Several members were only mildly affected compared with CaM-LQTS patients to date described in literature. The intrinsic Ca2+-binding affinity of the CaM C-terminal domain was 10-fold lower for p.N138K-CaM compared with wild-type-CaM. ICaL inactivation was slowed in cells expressing p.N138K-CaM but less than in p.D130G-CaM cells. Unexpectedly, a larger IKs current density was observed in cells expressing p.N138K-CaM, but not for p.D130G-CaM, compared with wild-type-CaM.

Conclusions: The p.N138K CALM3 variant impairs Ca2+-binding affinity of CaM and ICaL inactivation but potentiates IKs. The variably expressed phenotype of this variant compared with previously published de novo LQTS-CaM variants is likely explained by a milder impairment of ICaL inactivation combined with IKs augmentation.

Keywords: calmodulin; ion channels; long QT syndrome; phenotype; potassium.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calmodulin / genetics*
  • Calmodulin / metabolism
  • Humans
  • Long QT Syndrome* / diagnosis
  • Long QT Syndrome* / genetics
  • Mutation
  • Myocytes, Cardiac / metabolism
  • Phenotype
  • Tachycardia, Ventricular* / etiology

Substances

  • CALM3 protein, human
  • Calmodulin