Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges and opportunities in NASH drug development

Abstract

Nonalcoholic fatty liver disease (NAFLD) and its more severe form, nonalcoholic steatohepatitis (NASH), represent a growing worldwide epidemic and a high unmet medical need, as no licensed drugs have been approved thus far. Currently, histopathological assessment of liver biopsies is mandatory as a primary endpoint for conditional drug approval. This requirement represents one of the main challenges in the field, as there is substantial variability in this invasive histopathological assessment, which leads to dramatically high screen-failure rates in clinical trials. Over the past decades, several non-invasive tests have been developed to correlate with liver histology and, eventually, outcomes to assess disease severity and longitudinal changes non-invasively. However, further data are needed to ensure their endorsement by regulatory authorities as alternatives to histological endpoints in phase 3 trials. This Review describes the challenges of drug development in NAFLD–NASH trials and potential mitigating strategies to move the field forward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common reasons for screen failure in NASH clinical trials.
Fig. 2: Fibrosis, steatosis, inflammation and ballooning in NASH.
Fig. 3: Targeted pathways for the treatment of NASH.

Similar content being viewed by others

References

  1. Younossi, Z. et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 69, 2672–2682 (2019).

    Article  PubMed  Google Scholar 

  2. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  3. Noureddin, M. et al. NASH leading cause of liver transplant in women: updated analysis of indications for liver transplant and ethnic and gender variances. Am. J. Gastroenterol. 113, 1649–1659 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ascha, M. S. et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51, 1972–1978 (2010).

    Article  PubMed  Google Scholar 

  5. Kabbany, M. N. et al. Prevalence of nonalcoholic steatohepatitis-associated cirrhosis in the United States: an analysis of national health and nutrition examination survey data. Am. J. Gastroenterol. 112, 581–587 (2017).

    Article  PubMed  Google Scholar 

  6. Noureddin, M. & Rinella, M. E. Nonalcoholic fatty liver disease, diabetes, obesity, and hepatocellular carcinoma. Clin. Liver Dis. 19, 361–379 (2015).

    Google Scholar 

  7. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hirsova, P., Ibrabim, S. H., Gores, G. J. & Malhi, H. Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J. Lipid Res. 57, 1758–1770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marra, F. & Svegliati-Baroni, G. Lipotoxicity and the gut–liver axis in NASH pathogenesis. J. Hepatol. 68, 280–295 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Neuschwander-Tetri, B. A. Therapeutic landscape for NAFLD in 2020. Gastroenterology 158, 1984–1998 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Cornell, L. et al. DNA-PK—a candidate driver of hepatocarcinogenesis and tissue biomarker that predicts response to treatment and survival. Clin. Cancer Res. 21, 925–933 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Vuppalanchi, R., Noureddin, M., Alkhouri, N. & Sanyal, A. J. Therapeutic pipeline in nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 18, 373–392 (2021).

    Article  PubMed  Google Scholar 

  13. Sanyal, A. J. et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 385, 1559–1569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anania, F. A., Dimick-Santos, L., Mehta, R., Toerner, J. & Beitz, J. Nonalcoholic steatohepatitis: current thinking from the Division of Hepatology and Nutrition at the Food and Drug Administration. Hepatology 73, 2023–2027 (2021).

    Article  PubMed  Google Scholar 

  15. Han, M. A. T. et al. Rates of and factors associated with placebo response in trials of pharmacotherapies for nonalcoholic steatohepatitis: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 17, 616–629 (2019).

    Article  PubMed  Google Scholar 

  16. Ng, C. H. et al. Placebo effect on progression and regression in NASH: evidence from a meta-analysis. Hepatology 75, 1647–1661 (2022).

    Article  PubMed  Google Scholar 

  17. Sanyal, A. J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 16, 377–386 (2019).

    Article  PubMed  Google Scholar 

  18. Harrison, S. Mitigating Screen Failures: Finding the Right Patients for Trial Recruitment (EASL, 2022).

  19. Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    Article  PubMed  Google Scholar 

  20. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cusi, K. et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann. Intern. Med. 165, 305–315 (2016).

    Article  PubMed  Google Scholar 

  22. Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2018).

    Article  PubMed  Google Scholar 

  24. Chalasani, N. et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 142, 1592–1609 (2012).

    Article  PubMed  Google Scholar 

  25. Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 65, 1557–1565 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397 (2015).

    Article  PubMed  Google Scholar 

  27. Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61, 1547–1554 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Younossi, Z. M. et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 53, 1874–1882 (2011).

    Article  PubMed  Google Scholar 

  29. Sanyal, A. J. et al. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 54, 344–353 (2011).

    Article  PubMed  Google Scholar 

  30. Kleiner, D. E. et al. Association of histologic disease activity with progression of nonalcoholic fatty liver disease. JAMA Netw. Open 2, e1912565 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bedossa, P. et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56, 1751–1759 (2012).

    Article  PubMed  Google Scholar 

  32. Singh, S. & Loke, Y. K. Drug safety assessment in clinical trials: methodological challenges and opportunities. Trials 13, 138 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Björnsson, E. S. Incidence and outcomes of DILI in Western patients. Clin. Liver Dis. 4, 9–11 (2014).

    Google Scholar 

  34. Reuben, A., Koch, D. G. & Lee, W. M. Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology 52, 2065–2076 (2010).

    Article  PubMed  Google Scholar 

  35. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (National Institute of Diabetes and Digestive and Kidney Diseases, 2012).

  36. Goldkind, L. & Laine, L. A systematic review of NSAIDs withdrawn from the market due to hepatotoxicity: lessons learned from the bromfenac experience. Pharmacoepidemiol. Drug Saf. 15, 213–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Grudzinskas, C. Design of clinical development programs. In Principles of Clinical Pharmacology (Second Edition) (eds. Atkinson, A. Jr. et al.) 501–517 (Academic Press, 2007).

  38. Regev, A. et al. Consensus: guidelines: best practices for detection, assessment and management of suspected acute drug-induced liver injury during clinical trials in patients with nonalcoholic steatohepatitis. Aliment. Pharm. Ther. 49, 702–713 (2019).

    Article  Google Scholar 

  39. Guo, T. A tool to help you decide (detect potentially serious liver injury). In Annual Conference of the American Association for the Study of Liver Diseases (AASLD, 2008).

  40. Guo, T. How a SAS/IntrNet tool was created at the FDA for the detection of potential drug-induced liver injury using data with CDISC standard. In Western Users of SAS Software Annual Conference (WUSS, 2009).

  41. Temple, R. Hy’s law: predicting serious hepatotoxicity. Pharmacoepidemiol. Drug Saf. 15, 241–243 (2006).

    Article  PubMed  Google Scholar 

  42. Watkins, P. B. et al. Evaluation of drug-induced serious hepatotoxicity (eDISH): application of this data organization approach to phase III clinical trials of rivaroxaban after total hip or knee replacement surgery. Drug Saf. 34, 243–252 (2011).

    Article  PubMed  Google Scholar 

  43. Davison, B. A. et al. Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials. J. Hepatol. 73, 1322–1332 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Sumida, Y., Nakajima, A. & Itoh, Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 20, 475–485 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tian, G., Kong, D., Jiang, T. & Li, L. Complications after percutaneous ultrasound-guided liver biopsy: a systematic review and meta-analysis of a population of more than 12,000 patients from 51 cohort studies. J. Ultrasound Med. 39, 1355–1365 (2020).

    Article  PubMed  Google Scholar 

  46. Ratziu, V. et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128, 1898–1906 (2005).

    Article  PubMed  Google Scholar 

  47. Gawrieh, S., Knoedler, D. M., Saeian, K., Wallace, J. R. & Komorowski, R. A. Effects of interventions on intra- and interobserver agreement on interpretation of nonalcoholic fatty liver disease histology. Ann. Diagn. Pathol. 15, 19–24 (2011).

    Article  PubMed  Google Scholar 

  48. Gramlich, T. et al. Pathologic features associated with fibrosis in nonalcoholic fatty liver disease. Hum. Pathol. 35, 196–199 (2004).

    Article  PubMed  Google Scholar 

  49. Brunt, E. M. Liver biopsy reliability in clinical trials: thoughts from a liver pathologist. J. Hepatol. 73, 1310–1312 (2020).

    Article  PubMed  Google Scholar 

  50. Brunt, E. M. et al. Complexity of ballooned hepatocyte feature recognition: defining a training atlas for artificial intelligence-based imaging in NAFLD. J. Hepatol. 76, 1030–1041 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Noureddin, M. Artificial intelligence in NASH histology: human teaches a machine for the machine to help humans. Hepatology 74, 9–11 (2021).

    Article  PubMed  Google Scholar 

  52. Taylor-Weiner, A. et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH. Hepatology 74, 133–147 (2021).

    Article  PubMed  Google Scholar 

  53. Pokkalla, H. et al. Machine learning models accurately interpret liver histology in patients with nonalcoholic steatohepatitis (NASH). Hepatology 70, 121A–122A (2019).

    Google Scholar 

  54. Eddowes, P. J. et al. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 1717–1730 (2019).

    Article  PubMed  Google Scholar 

  55. Noureddin, M. et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 58, 1930–1940 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Loomba, R. MRI-proton density fat fraction treatment response criteria in nonalcoholic steatohepatitis. Hepatology 73, 881–883 (2021).

    Article  PubMed  Google Scholar 

  57. Stine, J. G. et al. Change in MRI-PDFF and histologic response in patients with nonalcoholic steatohepatitis: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 19, 2274–2283 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bril, F., Barb, D., Lomonaco, R., Lai, J. & Cusi, K. Change in hepatic fat content measured by MRI does not predict treatment-induced histological improvement of steatohepatitis. J. Hepatol. 72, 401–410 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Huang, D. Q. et al. Clinical utility of combined MRI-PDFF and ALT response in predicting histologic response in nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2022.08.036 (2022).

    Article  PubMed  Google Scholar 

  60. Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184–2196 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Harrison, S. A. et al. Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology 160, 219–231 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Sanyal, A. J. et al. Cirrhosis regression is associated with improved clinical outcomes in patients with nonalcoholic steatohepatitis. Hepatology 75, 1235–1246 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Vilar-Gomez, E. et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology 155, 443–457 (2018).

    Article  PubMed  Google Scholar 

  64. Adams, L. A. et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129, 113–121 (2005).

    Article  PubMed  Google Scholar 

  65. Paik, J. M. et al. The impact of modifiable risk factors on the long-term outcomes of non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 51, 291–304 (2019).

    Article  PubMed  Google Scholar 

  66. Younossi, Z. M., Otgonsuren, M., Venkatesan, C. & Mishra, A. In patients with non-alcoholic fatty liver disease, metabolically abnormal individuals are at a higher risk for mortality while metabolically normal individuals are not. Metabolism 62, 352–360 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Golabi, P. et al. Components of metabolic syndrome increase the risk of mortality in nonalcoholic fatty liver disease (NAFLD). Medicine 97, e0214 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Loomba, R. et al. Factors associated with histologic response in adult patients with nonalcoholic steatohepatitis. Gastroenterology 156, 88–95 (2019).

    Article  PubMed  Google Scholar 

  70. Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Altayar, O., Noureddin, N., Thanda Han, M. A., Murad, M. H. & Noureddin, M. Fibrosis changes in the placebo arm of NASH clinical trials. Clin. Gastroenterol. Hepatol. 17, 2387 (2019).

    Article  PubMed  Google Scholar 

  72. Harrison, S. A. et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: results from randomized phase III STELLAR trials. J. Hepatol. 73, 26–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Glass, O. et al. Standardisation of diet and exercise in clinical trials of NAFLD–NASH: recommendations from the Liver Forum. J. Hepatol. 73, 680–693 (2020).

    Article  PubMed  Google Scholar 

  75. Neumann, J., Beck, O. & Böttcher, M. Phosphatidylethanol, ethyl glucuronide and ethanol in blood as complementary biomarkers for alcohol consumption. J. Mass Spectrom. Adv. Clin. Lab 22, 3–7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pocock, S. J. & Stone, G. W. The primary outcome is positive—is that good enough? N. Engl. J. Med. 375, 971–979 (2016).

    Article  PubMed  Google Scholar 

  77. Cefalu, W. T. et al. Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? Reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care 41, 14–31 (2018).

    CAS  Google Scholar 

  78. Noureddin, N., Schattenberg, J. M., Alkhouri, N. & Noureddin, M. Noninvasive testing using magnetic resonance imaging techniques as outcomes in nonalcoholic steatohepatitis clinical trials: how full is the glass? Hepatol. Commun. 4, 141–144 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Castera, L., Friedrich-Rust, M. & Loomba, R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 1264–1281 (2019).

    Article  PubMed  Google Scholar 

  80. Loomba, R. et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study. Hepatology 60, 1920–1928 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Selvaraj, E. A. et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: a systematic review and meta-analysis. J. Hepatol. 75, 770–785 (2021).

    Article  PubMed  Google Scholar 

  82. Feldstein, A. E. et al. Serum cytokeratin-18 fragment levels are useful biomarkers for nonalcoholic steatohepatitis in children. Am. J. Gastroenterol. 108, 1526–1531 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Feldstein, A. E. et al. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology 50, 1072–1078 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, J. et al. Accuracy of cytokeratin 18 (M30 and M65) in detecting non-alcoholic steatohepatitis and fibrosis: a systematic review and meta-analysis. PLoS ONE 15, e0238717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Harrison, S. A. et al. A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol. Hepatol. 5, 970–985 (2020).

    Article  PubMed  Google Scholar 

  86. Dennis, A. et al. A composite biomarker using multiparametric magnetic resonance imaging and blood analytes accurately identifies patients with non-alcoholic steatohepatitis and significant fibrosis. Sci. Rep. 10, 15308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dennis, A. et al. Correlations between MRI biomarkers PDFF and cT1 with histopathological features of non-alcoholic steatohepatitis. Front. Endocrinol. 11, 575843 (2020).

    Article  Google Scholar 

  88. Allen, A. M. et al. The role of three-dimensional magnetic resonance elastography in the diagnosis of nonalcoholic steatohepatitis in obese patients undergoing bariatric surgery. Hepatology 71, 510–521 (2020).

    Article  PubMed  Google Scholar 

  89. Allen, A. M. et al. Multiparametric magnetic resonance elastography improves the detection of NASH regression following bariatric surgery. Hepatol. Commun. 4, 185–192 (2020).

    Article  PubMed  Google Scholar 

  90. Dzyubak, B. et al. Automated analysis of multiparametric magnetic resonance imaging/magnetic resonance elastography exams for prediction of nonalcoholic steatohepatitis. J. Magn. Reson. Imaging 54, 122–131 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Aggarwal, P. et al. Identifying patients who require pharmacotherapy for nonalcoholic steatohepatitis (NASH) using the FAST score. Hepatology 72, 922A–923A (2020).

  92. Noureddin, M. et al. MRI-based (MAST) score accurately identifies patients with NASH and significant fibrosis. J. Hepatol. 76, 781–787 (2022).

  93. Kim, B. K. et al. Head-to-head comparison between MEFIB, MAST, and FAST for detecting stage 2 fibrosis or higher among patients with NAFLD. J. Hepatol. 77, 1482–1490 (2022).

  94. Alkhouri, N. & McCullough, A. Noninvasive diagnosis of NASH and liver fibrosis within the spectrum of NAFLD. Gastroenterol. Hepatol. 8, 661–668 (2012).

    Google Scholar 

  95. Harrison, S. et al. Correlation between AI-based digital pathology and non-invasive tests (NITs) of NASH fibrosis stage: baseline data from the FASCINATE-2 phase 2b clinical study of denifanstat in patients with F2/F3 NASH. In Americam Association for the Study of Liver Diseases—the Liver Meeting (AASLD, 2022).

  96. Hartman, M. L., Tang, Y., Robins, D. B. & Vuppalanchi, R. FibroScan-AST (FAST) score improves qualification for at-risk nonalcoholic steatohepatitis (NASH) with different effects by specialty of the primary investigator in the phase 2b SYNERGY-NASH trial. In American Association for the Study of Liver Diseases—the Liver Meeting (AASLD, 2022).

  97. Pavlides, M. et al. Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J. Hepatol. 64, 308–315 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Are, V. S., Vuppalanchi, R., Vilar-Gomez, E. & Chalasani, N. Enhanced liver fibrosis score can be used to predict liver-related events in patients with nonalcoholic steatohepatitis and compensated cirrhosis. Clin. Gastroenterol. Hepatol. 19, 1292–1293 (2021).

    Article  PubMed  Google Scholar 

  99. Boursier, J. et al. Diagnostic accuracy and prognostic significance of blood fibrosis tests and liver stiffness measurement by FibroScan in non-alcoholic fatty liver disease. J. Hepatol. 65, 570–578 (2016).

    Article  PubMed  Google Scholar 

  100. Gidener, T. et al. Liver stiffness by magnetic resonance elastography predicts future cirrhosis, decompensation, and death in NAFLD. Clin. Gastroenterol. Hepatol. 19, 1915–1924 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Han, M. A. T. et al. MR elastography-based liver fibrosis correlates with liver events in nonalcoholic fatty liver patients: a multicenter study. Liver Int. 40, 2242–2251 (2020).

    Google Scholar 

  102. Petta, S. et al. Monitoring occurrence of liver-related events and survival by transient elastography in patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease. Clin. Gastroenterol. Hepatol. 19, 806–815 (2021).

    Article  PubMed  Google Scholar 

  103. Younes, R. et al. Long-term outcomes and predictive ability of non-invasive scoring systems in patients with non-alcoholic fatty liver disease. J. Hepatol. 75, 786–794 (2021).

    Article  PubMed  Google Scholar 

  104. Kawaguchi-Suzuki, M. et al. A genetic score associates with pioglitazone response in patients with non-alcoholic steatohepatitis. Front. Pharmacol. 9, 752 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gawrieh, S. et al. A pilot genome-wide analysis study identifies loci associated with response to obeticholic acid in patients with NASH. Hepatol. Commun. 3, 1571–1584 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dinani, A. M., Kowdley, K. V. & Noureddin, M. Application of artificial intelligence for diagnosis and risk stratification in NAFLD and NASH: the state of the art. Hepatology 74, 2233–2240 (2021).

    Article  PubMed  Google Scholar 

  107. Nassar, S. F., Raddassi, K. & Wu, T. Single-cell multiomics analysis for drug discovery. Metabolites 11, 729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kuret, T., Sodin-Šemrl, S., Leskošek, B. & Ferk, P. Single cell RNA sequencing in autoimmune inflammatory rheumatic diseases: current applications, challenges and a step toward precision medicine. Front. Med. 8, 822804 (2021).

    Article  Google Scholar 

  109. Carlsson, B. et al. Review article: the emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 51, 1305–1320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alkhouri, N. & Gawrieh, S. A perspective on RNA interference-based therapeutics for metabolic liver diseases. Expert Opin. Investig. Drugs 30, 237–244 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Burza, M. A. et al. PNPLA3 I148M (rs738409) genetic variant is associated with hepatocellular carcinoma in obese individuals. Dig. Liver Dis. 44, 1037–1041 (2012).

    CAS  Google Scholar 

  112. Grimaudo, S. et al. Association between PNPLA3 rs738409 C>G variant and liver-related outcomes in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 18, 935–944 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Pennisi, G. et al. PNPLA3 rs738409 C>G variant predicts fibrosis progression by noninvasive tools in nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 19, 1979–1981 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Romeo, S. et al. Morbid obesity exposes the association between PNPLA3 I148M (rs738409) and indices of hepatic injury in individuals of European descent. Int. J. Obes. 34, 190–194 (2010).

    Article  CAS  Google Scholar 

  115. Krawczyk, M. et al. PNPLA3 p.I148M variant is associated with greater reduction of liver fat content after bariatric surgery. Surg. Obes. Relat. Dis. 12, 1838–1846 (2016).

    Article  PubMed  Google Scholar 

  116. Oscarsson, J. et al. Effects of free omega-3 carboxylic acids and fenofibrate on liver fat content in patients with hypertriglyceridemia and non-alcoholic fatty liver disease: a double-blind, randomized, placebo-controlled study. J. Clin. Lipidol. 12, 1390–1403 (2018).

    Article  PubMed  Google Scholar 

  117. Unalp-Arida, A. & Ruhl, C. E. Patatin-like phospholipase domain-containing protein 3 I148M and liver fat and fibrosis scores predict liver disease mortality in the U.S. population. Hepatology 71, 820–834 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Abul-Husn, N. S. et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N. Engl. J. Med. 378, 1096–1106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ma, Y. et al. 17-β hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. Hepatology 69, 1504–1519 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Kozlitina, J. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46, 352–356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tan, H. L. et al. Association of glucokinase regulatory gene polymorphisms with risk and severity of non-alcoholic fatty liver disease: an interaction study with adiponutrin gene. J. Gastroenterol. 49, 1056–1064 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Mancina, R. M. et al. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology 150, 1219–1230 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Eslam, M., Valenti, L. & Romeo, S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J. Hepatol. 68, 268–279 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Noureddin, M., Muthiah, M. D. & Sanyal, A. J. Drug discovery and treatment paradigms in nonalcoholic steatohepatitis. Endocrinol. Diabetes Metab. 3, e00105 (2020).

    Article  PubMed  Google Scholar 

  125. Pockros, P. J. et al. CONTROL: a randomized phase 2 study of obeticholic acid and atorvastatin on lipoproteins in nonalcoholic steatohepatitis patients. Liver Int. 39, 2082–2093 (2019).

    CAS  Google Scholar 

  126. Loomba, R. et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology 73, 625–643 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Calle, R. A. et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nat. Med. 27, 1836–1848 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Alkhouri, N. et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: a randomised, open-label phase II trial. J. Hepatol. 77, 607–618 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Allen, A. M. et al. Clinical course of non-alcoholic fatty liver disease and the implications for clinical trial design. J. Hepatol. 77, 1237–1245 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Alkhouri, N., Tincopa, M., Loomba, R. & Harrison, S. A. What does the future hold for patients with nonalcoholic steatohepatitis: diagnostic strategies and treatment options in 2021 and beyond? Hepatol. Commun. 5, 1810–1823 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Konerman, M. A., Jones, J. C. & Harrison, S. A. Pharmacotherapy for NASH: current and emerging. J. Hepatol. 68, 362–375 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Fu, S., Watkins, S. M. & Hotamisligil, G. S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 15, 623–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Ertunc, M. E. & Hotamisligil, G. S. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J. Lipid Res. 57, 2099–2114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Loomba, R., Friedman, S. L. & Shulman, G. I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184, 2537–2564 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Harrison.

Ethics declarations

Competing interests

S.A.H.: grant support for research (Akero Therapeutics, Altimmune, Axcella Health, Cirius Therapeutics, CiVi Biopharma, CymaBay Therapeutics, Enyo Pharma, Galectin Therapeutics, Galmed Research and Development, Genfit, Gilead Sciences, Hepion Pharmaceuticals, HighTide Therapeutics, Intercept Pharmaceuticals, Madrigal Pharmaceuticals, Metacrine, NGM Biopharmaceuticals, NorthSea Therapeutics, Novartis Pharmaceuticals, Novo Nordisk, Poxel, Sagimet Biosciences, Terns Pharmaceuticals, Viking Therapeutics, 89Bio), advisory board and/or consultant (Akero Therapeutics, Alentis Therapeutics, Alimentiv, Altimmune, Arrowhead, Axcella Health, Boston Pharmaceuticals, B Riley FBR, ChronWell, Corcept Therapeutics, Echosens North America, ENYO Pharma, Foresite Labs, Galectin Therapeutics, Genfit, Gilead Sciences, GNS, GSK, Hepion Pharmaceuticals, HighTide Therapeutics, HistoIndex, Intercept Pharmaceuticals, Ionis, Kowa Research Institute, Madrigal Pharmaceuticals, Medpace, Merck, Metacrine, NeuroBo, NGM Biopharmaceuticals, NorthSea Therapeutics, Novo Nordisk, Nutrasource, Perspectum Diagnostics, Piper Sandler, Poxel, Sagimet Biosciences, Sonic Incytes Medical, Terns, Viking Therapeutics), stock and/or options (self-managed) (Akero Therapeutics, ChronWell, Cirius Therapeutics, Galectin Therapeutics, Genfit, Hepion Pharmaceuticals, HistoIndex, Metacrine, NGM Biopharmaceuticals, NorthSea Therapeutics). J.D.: shareholder in Poxel. A.M.A.: research support to her institution from Novo Nordisk, Pfizer and Target Pharma and is a consultant for Novo Nordisk and Pfizer. M.N.: advisory board and/or consultant for 89Bio, Altimmune, BI, Gilead, CohBar, CytoDyn, Pfizer, GSK, Novo Nordisk, Echosens, Madrigal, NorthSea, Perspectum, Terns, Takeda, Sami-Sabinsa Group, Siemens and Roche Diagnostics; M.N. has received research support from Allergan, Akero, BMS, Gilead, Galmed, Galectin, Genfit, Conatus, Enanta, Madrigal, Novartis, Pfizer, Shire, Viking and Zydus; M.N. is a shareholder or has stocks in Anaetos, ChronWell, CytoDyn, Ciema, Rivus Pharma and Viking. N.A.: research funding (89Bio, Akero, AbbVie–Allergan, Better Therapeutics, Boehringer Ingelheim, Bristol Myers Squibb, Corcept, DSM, Galectin, Genentech, Genfit, Gilead, Hepagene, Healio, Intercept, Inventiva, Ionis, Madrigal, Merck, NGM, Noom, NorthSea, Novo Nordisk, Perspectum, Pfizer, Poxel, Viking and Zydus), speaker bureau (AbbVie–Allergan, Alexion, Echosens, Eisai, Exelixis, Gilead, Intercept, Perspectum, Salix and Theratechnologies), consultant (AbbVie–Allergan, Echosens, Fibronostics, Gilead, Intercept, Madrigal, Novo Nordisk, Perspectum, Pfizer and Zydus).

Peer review

Peer review information

Nature Medicine thanks Raj Vuppalanchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrison, S.A., Allen, A.M., Dubourg, J. et al. Challenges and opportunities in NASH drug development. Nat Med 29, 562–573 (2023). https://doi.org/10.1038/s41591-023-02242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-023-02242-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research