Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiomic analyses implicate a neurodevelopmental program in the pathogenesis of cerebral arachnoid cysts

Abstract

Cerebral arachnoid cysts (ACs) are one of the most common and poorly understood types of developmental brain lesion. To begin to elucidate AC pathogenesis, we performed an integrated analysis of 617 patient–parent (trio) exomes, 152,898 human brain and mouse meningeal single-cell RNA sequencing transcriptomes and natural language processing data of patient medical records. We found that damaging de novo variants (DNVs) were highly enriched in patients with ACs compared with healthy individuals (P = 1.57 × 10−33). Seven genes harbored an exome-wide significant DNV burden. AC-associated genes were enriched for chromatin modifiers and converged in midgestational transcription networks essential for neural and meningeal development. Unsupervised clustering of patient phenotypes identified four AC subtypes and clinical severity correlated with the presence of a damaging DNV. These data provide insights into the coordinated regulation of brain and meningeal development and implicate epigenomic dysregulation due to DNVs in AC pathogenesis. Our results provide a preliminary indication that, in the appropriate clinical context, ACs may be considered radiographic harbingers of neurodevelopmental pathology warranting genetic testing and neurobehavioral follow-up. These data highlight the utility of a systems-level, multiomics approach to elucidate sporadic structural brain disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ACs are associated with DNVs in HBE genes highly intolerant to LoF variants.
Fig. 2: DNVs in AC genes disrupt epigenomic regulation and impact midgestational neural precursors and arachnoid cells.
Fig. 3: Unsupervised clustering of phenotype data identified clinical AC subtypes that correlate with genomic results.

Similar content being viewed by others

Data availability

The sequencing data for all AC parent–offspring trios and singletons from the healthcare-acquired cohort have been deposited in the NCBI database of Genotypes and Phenotypes and AnVIL (https://anvilproject.org/data/studies/phs000744/) under the accession number phs000744.v4.p2. Patients referred to GeneDx are consented to aggregate, de-identified research and subject to US Health Insurance Portability and Accountability Act (HIPAA) privacy protections. The patient-level alignment, phenotypic and variant call data for the GeneDx cohort cannot be shared without a HIPAA Business Associate Agreement. Access to the de-identified, aggregate data used in this analysis is available upon request to GeneDx, provided that a HIPAA Business Associate Agreement is established. Under those conditions, researchers can request the de-identified, aggregate data from GeneDx by contacting smcgee@genedx.com and can expect to receive the requested data within approximately 26 weeks.

Code availability

The software utilized in this study is available at the following web addresses: SAMtools version 1.3.1 (https://github.com/samtools/samtools); GATK HaplotypeCaller version 3.7.0 (https://github.com/broadinstitute/gatk/releases); GATK GenotypeGVCFs version 3.7.0 (https://github.com/broadinstitute/gatk/releases); GATK VariantRecalibrator version 3.7.0 (https://github.com/broadinstitute/gatk/releases); TrioDeNovo version 0.6.0 (http://genome.sph.umich.edu/wiki/Triodenovo); denovolyzeR version 0.2.0 (http://denovolyzer.org); DeNovoWEST 42 version 1.0.0 (https://github.com/queenjobo/DeNovoWEST); PLINK version 1.9 (http://pngu.mgh.harvard.edu/~purcell/plink); MetaSVM/cadd13/ANNOVAR version 4.2 (http://annovar.openbioinformatics.org); R version 3.5.0 (https://www.r-project.org/); Python version 2.7 (https://www.python.org/downloads/); EIGENSTRAT version 7.2.1 (https://github.com/DReichLab/EIG/tree/master/EIGENSTRAT); DMLE+ version 2.3 (http://dmle.org/); enrichR R package version 3.0 (https://cran.r-project.org/web/packages/enrichR/index.html); GOrilla (http://cbl-gorilla.cs.technion.ac.il/); QIAGEN December 2021 release (http://www.ingenuity.com); txt2hpo version 0.2.3 (https://github.com/GeneDx/txt2hpo); phenopy version 0.3.0 (https://github.com/GeneDx/phenopy); Monocle R package version 3 (https://cole-trapnell-lab.github.io/monocle3/); and disgenet2r R package version 0.0.9 (https://www.disgenet.org/static/disgenet2r/disgenet2r.html). Our in-house pipelines and codes are available at https://github.com/Kahle-Lab/Arachnoid-Cyst.

References

  1. White, T., Su, S., Schmidt, M., Kao, C. Y. & Sapiro, G. The development of gyrification in childhood and adolescence. Brain Cogn. 72, 36–45 (2010).

    Article  PubMed  Google Scholar 

  2. Juric-Sekhar, G. & Hevner, R. F. Malformations of cerebral cortex development: molecules and mechanisms. Annu. Rev. Pathol. 14, 293–318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siegenthaler, J. A. et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell 139, 597–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borrell, V. & Marin, O. Meninges control tangential migration of hem-derived Cajal–Retzius cells via CXCL12/CXCR4 signaling. Nat. Neurosci. 9, 1284–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Al-Holou, W. N. et al. Prevalence and natural history of arachnoid cysts in adults. J. Neurosurg. 118, 222–231 (2013).

    Article  PubMed  Google Scholar 

  6. Mustansir, F., Bashir, S. & Darbar, A. Management of arachnoid cysts: a comprehensive review. Cureus 10, e2458 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. De Keersmaecker, B. et al. Outcome of 12 antenatally diagnosed fetal arachnoid cysts: case series and review of the literature. Eur. J. Paediatr. Neurol. 19, 114–121 (2015).

    Article  PubMed  Google Scholar 

  8. Katzman, G. L., Dagher, A. P. & Patronas, N. J. Incidental findings on brain magnetic resonance imaging from 1000 asymptomatic volunteers. J. Am. Med. Assoc. 282, 36–39 (1999).

    Article  CAS  Google Scholar 

  9. Hayes, M. J., TerMaath, S. C., Crook, T. R. & Killeffer, J. A. A review on the effectiveness of surgical intervention for symptomatic intracranial arachnoid cysts in adults. World Neurosurg. 123, e259–e272 (2019).

    Article  PubMed  Google Scholar 

  10. Jafrani, R., Raskin, J. S., Kaufman, A. & Lam, S. Intracranial arachnoid cysts: pediatric neurosurgery update. Surg. Neurol. Int. 10, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Choi, J. U. & Kim, D. S. Pathogenesis of arachnoid cyst: congenital or traumatic? Pediatr. Neurosurg. 29, 260–266 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Starkman, S. P., Brown, T. C. & Linell, E. A. Cerebral arachnoid cysts. J. Neuropathol. Exp. Neurol. 17, 484–500 (1958).

    Article  CAS  PubMed  Google Scholar 

  13. Zeegers, M. et al. Radiological findings in autistic and developmentally delayed children. Brain Dev. 28, 495–499 (2006).

    Article  PubMed  Google Scholar 

  14. Nikolic, I. et al. The association of arachnoid cysts and focal epilepsy: hospital based case control study. Clin. Neurol. Neurosurg. 159, 39–41 (2017).

    Article  PubMed  Google Scholar 

  15. Al-Holou, W. N. et al. Prevalence and natural history of arachnoid cysts in children. J. Neurosurg. Pediatr. 5, 578–585 (2010).

    Article  PubMed  Google Scholar 

  16. Wiener, S. N., Pearlstein, A. E. & Eiber, A. MR imaging of intracranial arachnoid cysts. J. Comput. Assist. Tomogr. 11, 236–241 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Gosalakkal, J. A. Intracranial arachnoid cysts in children: a review of pathogenesis, clinical features, and management. Pediatr. Neurol. 26, 93–98 (2002).

    Article  PubMed  Google Scholar 

  18. Hall, S. et al. Clinical and radiological outcomes following surgical treatment for intra-cranial arachnoid cysts. Clin. Neurol. Neurosurg. 177, 42–46 (2019).

    Article  PubMed  Google Scholar 

  19. Cilluffo, J. M., Gomez, M. R., Reese, D. F., Onofrio, B. M. & Miller, R. H. Idiopathic (“congenital”) spinal arachnoid diverticula. Clinical diagnosis and surgical results. Mayo Clin. Proc. 56, 93–101 (1981).

    CAS  PubMed  Google Scholar 

  20. Zafeiriou, D. I. & Batzios, S. P. Brain and spinal MR imaging findings in mucopolysaccharidoses: a review. AJNR Am. J. Neuroradiol. 34, 5–13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qureshi, H. M. et al. Familial and syndromic forms of arachnoid cyst implicate genetic factors in disease pathogenesis. Cereb. Cortex 18, bhac257 (2022).

    Google Scholar 

  22. Furey, C. G. et al. De novo mutation in genes regulating neural stem cell fate in human congenital hydrocephalus. Neuron 99, 302–314.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin, S. C. et al. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nat. Med. 26, 1754–1765 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bilgüvar, K. et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467, 207–210 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barak, T. et al. Recessive LAMC3 mutations cause malformations of occipital cortical development. Nat. Genet. 43, 590–594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mishra-Gorur, K. et al. Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Neuron 84, 1226–1239 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kundishora, A. J. et al. DIAPH1 variants in non-East Asian patients with sporadic moyamoya disease. JAMA Neurol. 78, 993–1003 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. De Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).

    Article  PubMed  Google Scholar 

  29. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Timberlake, A. T. et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. eLife 5, e20125 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Krumm, N. et al. Excess of rare, inherited truncating mutations in autism. Nat. Genet. 47, 582–588 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi, C. et al. Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood 112, 4699–4711 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, X. et al. MEK is a key regulator of gliogenesis in the developing brain. Neuron 75, 1035–1050 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chakraborty, R. et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 124, 3007–3015 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aoidi, R. et al. Mek1Y130C mice recapitulate aspects of human cardio-facio-cutaneous syndrome. Dis. Model Mech. 11, dmm031278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nie, Z. et al. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol. Cell. Biol. 20, 8879–8888 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tumber, A. et al. Potent and selective KDM5 inhibitor stops cellular demethylation of H3K4me3 at transcription start sites and proliferation of MM1S myeloma cells. Cell Chem. Biol. 24, 371–380 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Castro Dias, M., Mapunda, J. A., Vladymyrov, M. & Engelhardt, B. Structure and junctional complexes of endothelial, epithelial and glial brain barriers. Int. J. Mol. Sci. 20, 5372 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pinero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Arriola, G., de Castro, P. & Verdu, A. Familial arachnoid cysts. Pediatr. Neurol. 33, 146–148 (2005).

    Article  PubMed  Google Scholar 

  42. Martinez, J. O. et al. Intracranial arachnoid cysts and epilepsy in children: should this be treated surgically? Our 29-year experience and review of the literature. Neurocirugía 33, 157–164 (2021).

    Article  Google Scholar 

  43. Valencia, A. M. & Pasca, S. P. Chromatin dynamics in human brain development and disease. Trends Cell Biol. 32, 98–101 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Sokpor, G., Xie, Y., Rosenbusch, J. & Tuoc, T. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders. Front. Mol. Neurosci. 10, 243 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Eissenberg, J. C. & Shilatifard, A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339, 240–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Bragin, E. et al. DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res. 42, D993–D1000 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rylaarsdam, L. & Guemez-Gamboa, A. Genetic causes and modifiers of autism spectrum disorder. Front. Cell Neurosci. 13, 385 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jahed, Z., Shams, H., Mehrbod, M. & Mofrad, M. R. Mechanotransduction pathways linking the extracellular matrix to the nucleus. Int. Rev. Cell Mol. Biol. 310, 171–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Rengachary, S. S. & Watanabe, I. Ultrastructure and pathogenesis of intracranial arachnoid cysts. J. Neuropathol. Exp. Neurol. 40, 61–83 (1981).

    Article  CAS  PubMed  Google Scholar 

  53. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Rabiei, K., Hogfeldt, M. J., Doria-Medina, R. & Tisell, M. Surgery for intracranial arachnoid cysts in children—a prospective long-term study. Childs Nerv. Syst. 32, 1257–1263 (2016).

    Article  PubMed  Google Scholar 

  55. Tamburrini, G., Dal Fabbro, M., & Di Rocco, C. Sylvian fissure arachnoid cysts: a survey on their diagnostic workout and practical management. Childs Nerv. Syst. 24, 593–604 (2008).

    Article  PubMed  Google Scholar 

  56. Schulz, M. et al. Surgical management of intracranial arachnoid cysts in pediatric patients: radiological and clinical outcome. J. Neurosurg. Pediatr. 28, 102–112 (2021).

    Article  Google Scholar 

  57. Sadler, B. et al. Rare and de novo coding variants in chromodomain genes in Chiari I malformation. Am. J. Hum. Genet. 108, 100–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Duran, D. et al. Mutations in chromatin modifier and ephrin signaling genes in vein of galen malformation. Neuron 101, 429–443.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Timberlake, A. T. et al. Genetic influence on neurodevelopment in nonsyndromic craniosynostosis. Plast. Reconstr. Surg. 149, 1157–1165 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Retterer, K. et al. Clinical application of whole-exome sequencing across clinical indications. Genet. Med. 18, 696–704 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590, 290–299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mills, R. E. et al. Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res. 21, 830–839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ware, J. S., Samocha, K. E., Homsy, J. & Daly, M. J. Interpreting de novo variation in human disease using denovolyzeR. Curr. Protoc. Hum. Genet. 87, 7.25.1–7.25.15 (2015).

    PubMed  Google Scholar 

  67. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49, 1593–1601 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Song, L. et al. STAB: a spatio-temporal cell atlas of the human brain. Nucleic Acids Res. 49, D1029–D1037 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Walker, R. L. et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell 179, 750–771.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014).

    Article  PubMed  Google Scholar 

  78. DeSisto, J. et al. Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function. Dev. Cell 54, 43–59.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Campello, R. J. G. B., Moulavi, D. & Sander, J. in Advances in Knowledge Discovery and Data Mining (eds. Pei, J. et al.) 160–172 (Springer Berlin Heidelberg, 2013).

Download references

Acknowledgements

We are grateful to the patients and families who participated in this research for their invaluable role in this study. This work is supported by the Yale–National Institutes of Health (NIH) Center for Mendelian Genomics (5U54HG006504); R01 NS111029-01A1, R01 NS109358, K12 228168 and the Rudi Schulte Research Institute (to K.T.K.); the NIH Medical Scientist Training Program (NIH/National Institute of General Medical Sciences grant T32GM007205); an NIH Clinical and Translational Science Award from the National Center for Advancing Translational Sciences (TL1 TR001864); the K99/R00 Pathway to Independence Award R00HL143036 (to S.C.J.); the Children’s Discovery Institute Faculty Scholar award CDI-FR-2021-926 (to S.C.J.); the Vernon W. Lippard Research Fellowship; and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.J.K. and K.T.K. designed and conceptualized the study. A.J.K., G.A., S. McGee, K.Y.M., V.G., E.K., P.Q.D., H.S., J.O., J.S., A.A., M.L.D., C.G.F., A.T.T., H.M.Q., A.A.E., B.S.C., M.G., R.P.L., F.M., R.I.T., S.C.J. and K.T.K. performed cohort ascertainment, recruitment and phenotypic characterization. I.R.T., C.C., F.L.-G. and S. Mane produced and validated the exome sequencing data. G.A., S. McGee, V.G., A.J.K., S.Z., Y.-C.W., A.T.T., J.R.K., P.-Y.F., W.D., F.M., R.I.T., S.C.J. and K.T.K. performed the exome sequencing analysis. G.A., E.K. and K.T.K. performed the integrative genomics analysis. A.J.K., S. McGee, K.Y.M., V.G., A.M.-D.-L. and K.T.K. performed the phenomics analysis. G.A., A.J.K., S.C.J. and W.D. performed the statistical analysis. C.N.-W. performed Sanger sequencing validation. A.J.K., A.M.-D.-L. and K.T.K. performed neuroimaging characterization. S.H. performed the biophysical simulation. C.N.-W., S. Mane, M.G., R.P.L, R.I.T., S.C.J. and K.T.K. provided resources. A.J.K., G.A., S. McGee, K.Y.M., E.K., S.L.A., M.G., R.P.L., F.M., R.I.T., S.C.J. and K.T.K. wrote and reviewed the manuscript. A.J.K., G.A., S. McGee, K.Y.M., R.I.T., S.C.J. and K.T.K. performed project administration. R.P.L., S.C.J. and K.T.K. acquired funding and supervised the project.

Corresponding author

Correspondence to Kristopher T. Kahle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Alan Shuldiner, Abhaya Kulkarni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Anna Maria Ranzoni, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Graphical summary of the methodological framework of the study.

Graphical summary of the methodological framework of the study.

Extended Data Fig. 2 De novo variation (DNV) rate closely approximated Poisson distribution in AC cases and controls.

The observed number of DNVs per subject (bars) compared to the numbers expected (lines) from the Poisson distribution in the case (red) and control (blue) cohorts. ‘p’ denotes chi-squared p-value. P-values determined by Chi-squared goodness of fit test, two sided. Not adjusted.

Extended Data Fig. 3 Quantile-quantile (Q-Q) plot comparing observed versus expected p-values.

(a) DeNovoWEST derived plots for de novo variants (DNVs) in each gene in 617 AC cases. ADNP, ARIDB1, KDM5C, PURA, FOXP1, and MAP2K1 exhibit exome-wide significant enrichment for all DNVs in AC cases. ARID1B, ADNP, and FOXP1 exhibit significant enrichment of loss-of-function (LoF) DNVs comprising premature termination, frameshift, or splice-site variants. KDM5C and MAP2K1 exhibit significant enrichment of missense variants. ARID1B, FOXP1, ADNP, and KDM5C exhibit significant enrichment of protein-altering variants, including missense and predictive LoF DNVs. ARID1B, ADNP, FOXP1, MAP2K1, PURA, and KDM5C exhibit significant enrichment of protein-damaging variants, including D-mis and LoF DNVs. There is no significant enrichment of synonymous DNVs among the 617 cases. Grey areas within graphs represents 95% confidence interval for expected values. (b) DenovolyzeR derived plots for DNVs in each gene in 617 AC cases. ARID1B, PURA, ADNP, and FOXP1 exhibit exome-wide significant enrichment for all DNVs in AC cases. ARID1B and ADNP exhibit significant enrichment of LoF DNVs. MAP2K1 exhibits significant enrichment of damaging-missense (D-mis) variants (MetaSVM = ‘D’ or MPC > 2 damaging missense). ARID1B, ADNP, FOXP1, MAP2K1, and KDM5C exhibit significant enrichment of protein-altering variants. ARID1B, ADNP, FOXP1, MAP2K1, and DDX3X exhibit significant enrichment of protein-damaging variants. There is no significant enrichment of tolerated-missense (T-mis) DNVs or synonymous DNVs among the 617 cases. The grey areas within graphs represents 95% confidence interval centered around the observed = expected line.

Extended Data Fig. 4 Phenomic heat map of traits identified in AC patients harboring de novo variants (DNVs) in exome-wide significant AC risk genes.

Subject phenotypes were determined by text2HPO natural language processing of medical record data (https://github.com/GeneDx/txt2hpo).

Extended Data Fig. 5 Integrative genomic findings within meningeal cell dataset.

(a) Enrichment of AC genes in meningeal gene modules. Numbers displayed exceed the Bonferroni-corrected statistical significance threshold tested by one sided Fisher’s exact test and are -log10(p-value). pAC: possible AC gene set; hcAC; high-confidence AC gene set; EWS exome-wide significant; Mod: module. (b) GOrilla and WikiPathways analyses of enriched arachnoid cell module 3. P-values determined by one sided Fisher’s exact test. Bonferroni-corrected significance threshold denoted by the vertical yellow line. Top terms displayed. (c) Enrichment of gene modules in specific meningeal cell types. P-values by one sided Fisher’s exact test. Modules in red have similar meningeal cell-type enrichment compared to AC risk gene meningeal cell-type enrichment. The red asterisk highlights significant enrichment (Bonferroni corrected) for cell types in the pAC gene set.

Extended Data Table 1 Neuroaxial phenotypes in AC probands
Extended Data Table 2 Candidate AC risk genes
Extended Data Table 3 DisGeNET phenotypic overlap with hcAC and pAC gene list
Extended Data Table 4 Top 20 Term Frequencies (TFs) per cluster
Extended Data Table 5 Cluster enrichment analysis of all trios with phenomic data

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Tables 1–5.

Reporting Summary

Supplementary Table 6

Top 20 gene markers per cell cluster in the Spatio-Temporal Cell Atlas of the Human Brain dataset ranked by log2[fold change].

Supplementary Table 7

Top 20 gene markers per cell cluster in the the embryonic forebrain meningeal dataset ranked by log2[fold change].

Supplementary Table 8

Phenotype groupings of HPO terms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundishora, A.J., Allington, G., McGee, S. et al. Multiomic analyses implicate a neurodevelopmental program in the pathogenesis of cerebral arachnoid cysts. Nat Med 29, 667–678 (2023). https://doi.org/10.1038/s41591-023-02238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-023-02238-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing