Skip to main content

Advertisement

Log in

Prediction of incident atrial fibrillation in post-stroke patients using machine learning: a French nationwide study

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Targeting ischemic strokes patients at risk of incident atrial fibrillation (AF) for prolonged cardiac monitoring and oral anticoagulation remains a challenge. Clinical risk scores have been developed to predict post-stroke AF with suboptimal performances. Machine learning (ML) models are developing in the field of AF prediction and may be used to discriminate post-stroke patients at risk of new onset AF. This study aimed to evaluate ML models for the prediction of AF and to compare predictive ability to usual clinical scores.

Methods

Based on a French nationwide cohort of 240,459 ischemic stroke patients without AF at baseline from 2009 to 2012, ML models were trained on a train set and the best model was selected to be evaluate on the test set. Discrimination of the best model was evaluated using the C index. We finally compared our best model with previously described clinical scores.

Results

During a mean follow-up of 7.9 ± 11.5 months, 14,095 patients (mean age 77.6 ± 10.6; 50.3% female) developed incident AF. After training, the best ML model selected was a deep neural network with a C index of 0.77 (95% CI 0.76–0.78) on the test set. Compared to traditional clinical scores, the selected model was statistically significantly superior to the CHA2DS2-VASc score, Framingham risk score, HAVOC score and C2HEST score (P < 0.0001). The ability to predict AF was improved as shown by net reclassification index increase (P < 0.0001) and decision curve analysis.

Conclusions

ML algorithms predict incident AF post-stroke with a better ability than previously developed clinical scores.

Graphic Abstract

AF: atrial fibrillation; DNN: deep neural network; IS: ischemic stroke; KNN: K-nearest neighbors; LR: logistic regression; RFC: random forest classifier; XGBoost: extreme gradient boosting

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will not be available according to the French legislation.

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56-528. https://doi.org/10.1161/CIR.0000000000000659

    Article  PubMed  Google Scholar 

  2. Guo Y, Tian Y, Wang H, Si Q, Wang Y, Lip G (2015) Prevalence, incidence, and lifetime risk of atrial fibrillation in China: new insights into the global burden of atrial fibrillation. Chest 147(1):109–119. https://doi.org/10.1378/chest.14-0321

    Article  PubMed  Google Scholar 

  3. Burdett P, Lip GYH (2022) Atrial fibrillation in the UK: predicting costs of an emerging epidemic recognizing and forecasting the cost drivers of atrial fibrillation-related costs. Eur Heart J 8(2):187–194. https://doi.org/10.1093/ehjqcco/qcaa093

    Article  Google Scholar 

  4. Hart RG, Pearce LA, Aguilar MI (2007) Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 146(12):857–867. https://doi.org/10.7326/0003-4819-146-12-200706190-00007

    Article  PubMed  Google Scholar 

  5. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G et al (2021) 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42(5):373–498. https://doi.org/10.1093/eurheartj/ehaa612

    Article  PubMed  Google Scholar 

  6. Chao T-F, Joung B, Takahashi Y, Lim TW, Choi E-K, Chan Y-H, Guo Y et al (2022) 2021 Focused update consensus guidelines of the Asia Pacific Heart rhythm society on stroke prevention in atrial fibrillation: executive summary. Thromb Haemost 122(1):20–47. https://doi.org/10.1055/s-0041-1739411

    Article  PubMed  Google Scholar 

  7. Kishore A, Vail A, Majid A, Dawson J, Lees KR, Tyrrell PJ, Smith CJ (2014) Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Stroke 45(2):520–526. https://doi.org/10.1161/STROKEAHA.113.003433

    Article  CAS  PubMed  Google Scholar 

  8. Sposato LA, Cipriano LE, Saposnik G, Vargas ER, Riccio PM, Hachinski V (2015) Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. Lancet Neurol 14(4):377–387. https://doi.org/10.1016/S1474-4422(15)70027-X

    Article  PubMed  Google Scholar 

  9. Bisson A, Bodin A, Clementy N, Babuty D, Lip GYH, Fauchier L (2018) Prediction of incident atrial fibrillation according to gender in patients with ischemic stroke from a nationwide cohort. Am J Cardiol 121(4):437–444. https://doi.org/10.1016/j.amjcard.2017.11.016

    Article  PubMed  Google Scholar 

  10. Li Y-G, Bisson A, Bodin A, Herbert J, Grammatico-Guillon L, Joung B, Wang Y-T, Lip GYH, Fauchier L (2019) C2 HEST score and prediction of incident atrial fibrillation in poststroke patients: a french nationwide study. J Am Heart Assoc 8(13):e012546. https://doi.org/10.1161/JAHA.119.012546

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bishop CM (2006) Pattern recognition and machine learning, 3rd edn. Springer, New York

    Google Scholar 

  12. Hill NR, Ayoubkhani D, McEwan P, Sugrue DM, Farooqui U, Lister S, Lumley M et al (2019) Predicting atrial fibrillation in primary care using machine learning. PLoS One 14(11):e0224582. https://doi.org/10.1371/journal.pone.0224582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sekelj S, Sandler B, Johnston E, Pollock KG, Hill NR, Gordon J, Tsang C, Khan S, Ng FS, Farooqui U (2020) Detecting undiagnosed atrial fibrillation in UK primary care: validation of a machine learning prediction algorithm in a retrospective cohort study. Eur J Prevent Cardiol. https://doi.org/10.1177/2047487320942338

    Article  Google Scholar 

  14. Lip GYH, Genaidy A, Tran G, Marroquin P, Estes C, Sloop S (2022) Improving stroke risk prediction in the general population: a comparative assessment of common clinical rules, a new multimorbid index, and machine-learning-based algorithms. Thromb Haemost 122(1):142–150. https://doi.org/10.1055/a-1467-2993

    Article  PubMed  Google Scholar 

  15. Couris CM, Polazzi S, Olive F, Remontet L, Bossard N, Gomez F, Schott A-M, Mitton N, Colonna M, Trombert B (2009) Breast cancer incidence using administrative data: correction with sensitivity and specificity. J Clin Epidemiol 62(6):660–666. https://doi.org/10.1016/j.jclinepi.2008.07.013

    Article  PubMed  Google Scholar 

  16. Fauchier L, Clementy N, Pelade C, Collignon C, Nicolle E, Lip GYH (2015) Patients with ischemic stroke and incident atrial fibrillation: a nationwide cohort study. Stroke 46(9):2432–2437. https://doi.org/10.1161/STROKEAHA.115.010270

    Article  PubMed  Google Scholar 

  17. Lip GYH, Nieuwlaat R, Pisters R, Lane DA, Crijns HJGM (2010) Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 137(2):263–272. https://doi.org/10.1378/chest.09-1584

    Article  PubMed  Google Scholar 

  18. Li Y-G, Pastori D, Farcomeni A, Yang P-S, Jang E, Joung B, Wang Y-T, Guo Y-T, Lip GYH (2019) A simple clinical risk score (C2HEST) for predicting incident atrial fibrillation in Asian subjects: derivation in 471,446 Chinese subjects, with internal validation and external application in 451,199 Korean Subjects. Chest 155(3):510–518. https://doi.org/10.1016/j.chest.2018.09.011

    Article  PubMed  Google Scholar 

  19. Kwong C, Ling AY, Crawford MH, Zhao SX, Shah NH (2017) A clinical score for predicting atrial fibrillation in patients with cryptogenic stroke or transient ischemic attack. Cardiology 138(3):133–140. https://doi.org/10.1159/000476030

    Article  PubMed  Google Scholar 

  20. Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM, D’Agostino RB, Newton-Cheh C et al (2009) Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet (London, England) 373(9665):739–745. https://doi.org/10.1016/S0140-6736(09)60443-8

    Article  PubMed  Google Scholar 

  21. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845

    Article  CAS  PubMed  Google Scholar 

  22. Pencina MJ, D’Agostino RB, D’Agostino RB, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27(2):157–172. https://doi.org/10.1002/sim.2929. (discussion 207–212)

    Article  PubMed  Google Scholar 

  23. Vickers AJ, Cronin AM, Elkin EB, Gonen M (2008) Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak 8:53

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bisson A, Clementy N, Bodin A, Angoulvant D, Babuty D, Lip GYH, Fauchier L (2017) Relationship of preexisting cardiovascular comorbidities to newly diagnosed atrial fibrillation after ischemic stroke. Stroke 48(10):2878–2880. https://doi.org/10.1161/STROKEAHA.117.018251

    Article  PubMed  Google Scholar 

  25. Olier I, Ortega-Martorell S, Pieroni M, Lip GYH (2021) How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management. Cardiovasc Res 117(7):1700–1717. https://doi.org/10.1093/cvr/cvab169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chua W, Purmah Y, Cardoso VR, Gkoutos GV, Tull SP, Neculau G, Thomas MR et al (2019) Data-driven discovery and validation of circulating blood-based biomarkers associated with prevalent atrial fibrillation. Eur Heart J 40(16):1268–1276. https://doi.org/10.1093/eurheartj/ehy815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng X, Wang F, Zhang J, Cui X, Jiang F, Chen N, Zhou J, Chen J, Lin S, Zou J (2022) Using machine learning to predict atrial fibrillation diagnosed after ischemic stroke. Int J Cardiol 347(January):21–27. https://doi.org/10.1016/j.ijcard.2021.11.005

    Article  PubMed  Google Scholar 

  28. Lip GYH, Tran G, Genaidy A, Marroquin P, Estes C, Landsheft J (2022) Improving dynamic stroke risk prediction in non-anticoagulated patients with and without atrial fibrillation: comparing common clinical risk scores and machine learning algorithms. Eur Heart J 8(5):548–556. https://doi.org/10.1093/ehjqcco/qcab037

    Article  Google Scholar 

  29. Lip GYH, Genaidy A, Tran G, Marroquin P, Estes C (2021) Incident atrial fibrillation and its risk prediction in patients developing COVID-19: a machine learning based algorithm approach. Eur J Intern Med 91(September):53–58. https://doi.org/10.1016/j.ejim.2021.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Skrebelyte-Strøm L, Rønning OM, Dahl FA, Steine K, Kjekshus H (2022) Prediction of occult atrial fibrillation in patients after cryptogenic stroke and transient ischaemic attack: PROACTIA. Europace. https://doi.org/10.1093/europace/euac092

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nielsen JC, Lin Y-J, de Oliveira Figueiredo MJ, Shamloo AS, Alfie A, Boveda S, Dagres N et al (2020) European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Europace 22(8):1147–1148. https://doi.org/10.1093/europace/euaa065

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hart RG, Sharma M, Mundl H, Kasner SE, Bangdiwala SI, Berkowitz SD, Swaminathan B et al (2018) Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med 378(23):2191–2201. https://doi.org/10.1056/NEJMoa1802686

    Article  CAS  PubMed  Google Scholar 

  33. Diener H-C, Sacco RL, Donald Easton J, Granger CB, Bernstein RA, Uchiyama S, Kreuzer J et al (2019) Dabigatran for prevention of stroke after embolic stroke of undetermined source. N Engl J Med 380(20):1906–1917. https://doi.org/10.1056/NEJMoa1813959

    Article  CAS  PubMed  Google Scholar 

  34. Poli S, Meissner C, Baezner HJ, Kraft A, Hillenbrand F, Hobohm C, Liman J et al (2021) Apixaban for treatment of embolic stroke of undetermined source (ATTICUS) randomized trial—update of patient characteristics and study timeline after interim analysis. Eur Heart J 42(Supplement_1):ehab724.2070. https://doi.org/10.1093/eurheartj/ehab724.2070

    Article  Google Scholar 

  35. Sanna T, Diener H-C, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, Rymer MM et al (2014) Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 370(26):2478–2486. https://doi.org/10.1056/NEJMoa1313600

    Article  CAS  PubMed  Google Scholar 

  36. Gladstone DJ, Spring M, Dorian P, Panzov V, Thorpe KE, Hall J, Vaid H et al (2014) Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med 370(26):2467–2477. https://doi.org/10.1056/NEJMoa1311376

    Article  CAS  PubMed  Google Scholar 

  37. Rubiera M, Aires A, Antonenko K, Lémeret S, Nolte CH, Putaala J, Schnabel RB et al (2022) European Stroke Organisation (ESO) guideline on screening for subclinical atrial fibrillation after stroke or transient ischaemic attack of undetermined origin. Eur Stroke J. https://doi.org/10.1177/23969873221099478

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Bisson.

Ethics declarations

Conflict of interest

A.Bisson has been a consultant or speaker for Astra-Zeneca, Bayer, BMS/Pfizer, Medtronic, Vitorpharma and Alnylam. D. Angoulvant has been a consultant or speaker for Amgen, Astra-Zeneca, Bayer, BMS/Pfizer, MSD, Novartis, Novo Nordisk, Sanofi, Servier. GYH.Lip has been a consultant for Bayer/Janssen, BMS/Pfizer, Medtronic, Boehringer Ingelheim, Novartis, Verseon, and Daiichi-Sankyo and a speaker for Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, and Daiichi-Sankyo; no fees are directly received personally. L. Fauchier has been a consultant or speaker for Bayer, BMS/Pfizer, Boehringer Ingelheim, Medtronic, and Novartis.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisson, A., Lemrini, Y., El-Bouri, W. et al. Prediction of incident atrial fibrillation in post-stroke patients using machine learning: a French nationwide study. Clin Res Cardiol 112, 815–823 (2023). https://doi.org/10.1007/s00392-022-02140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-022-02140-w

Keywords

Navigation