Circulating Extracellular Vesicle-Propagated microRNA Signature as a Vascular Calcification Factor in Chronic Kidney Disease

Circ Res. 2023 Feb 17;132(4):415-431. doi: 10.1161/CIRCRESAHA.122.321939. Epub 2023 Jan 26.

Abstract

Background: Chronic kidney disease (CKD) accelerates vascular calcification via phenotypic switching of vascular smooth muscle cells (VSMCs). We investigated the roles of circulating small extracellular vesicles (sEVs) between the kidneys and VSMCs and uncovered relevant sEV-propagated microRNAs (miRNAs) and their biological signaling pathways.

Methods and results: We established CKD models in rats and mice by adenine-induced tubulointerstitial fibrosis. Cultures of A10 embryonic rat VSMCs showed increased calcification and transcription of osterix (Sp7), osteocalcin (Bglap), and osteopontin (Spp1) when treated with rat CKD serum. sEVs, but not sEV-depleted serum, accelerated calcification in VSMCs. Intraperitoneal administration of a neutral sphingomyelinase and biogenesis/release inhibitor of sEVs, GW4869 (2.5 mg/kg per 2 days), inhibited thoracic aortic calcification in CKD mice under a high-phosphorus diet. GW4869 induced a nearly full recovery of calcification and transcription of osteogenic marker genes. In CKD, the miRNA transcriptome of sEVs revealed a depletion of 4 miRNAs, miR-16-5p, miR-17~92 cluster-originated miR-17-5p/miR-20a-5p, and miR-106b-5p. Their expression decreased in sEVs from CKD patients as kidney function deteriorated. Transfection of VSMCs with each miRNA-mimic mitigated calcification. In silico analyses revealed VEGFA (vascular endothelial growth factor A) as a convergent target of these miRNAs. We found a 16-fold increase in VEGFA transcription in the thoracic aorta of CKD mice under a high-phosphorus diet, which GW4869 reversed. Inhibition of VEGFA-VEGFR2 signaling with sorafenib, fruquintinib, sunitinib, or VEGFR2-targeted siRNA mitigated calcification in VSMCs. Orally administered fruquintinib (2.5 mg/kg per day) for 4 weeks suppressed the transcription of osteogenic marker genes in the mouse aorta. The area under the curve of miR-16-5p, miR-17-5p, 20a-5p, and miR-106b-5p for the prediction of abdominal aortic calcification was 0.7630, 0.7704, 0.7407, and 0.7704, respectively.

Conclusions: The miRNA transcriptomic signature of circulating sEVs uncovered their pathologic role, devoid of the calcification-protective miRNAs that target VEGFA signaling in CKD-driven vascular calcification. These sEV-propagated miRNAs are potential biomarkers and therapeutic targets for vascular calcification.

Keywords: anticoagulant; atherosclerosis; calcium phosphate; cardiovascular disease; creatinine; glomerular filtration rate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Extracellular Vesicles* / metabolism
  • Mice
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Muscle, Smooth, Vascular / metabolism
  • Myocytes, Smooth Muscle / metabolism
  • Phosphorus / metabolism
  • Rats
  • Renal Insufficiency, Chronic* / metabolism
  • Vascular Calcification* / metabolism
  • Vascular Endothelial Growth Factor A / genetics
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • MicroRNAs
  • GW 4869
  • Vascular Endothelial Growth Factor A
  • Phosphorus