Unipolar voltage mapping in right ventricular cardiomyopathy: pitfalls, solutions and advantages

Europace. 2023 Mar 30;25(3):1035-1040. doi: 10.1093/europace/euac278.

Abstract

Aims: Endocardial unipolar and bipolar voltage mapping (UVM/BVM) of the right ventricle (RV) are used for transmural substrate delineation. However, far-field electrograms (EGMs) and EGM changes due to injury current may influence automatically generated UVM. Epicardial BVM is considered less accurate due to the impact of fat thickness (FT). Data on epicardial UVM are sparse. The aim of the study is two-fold: to assess the influence of the manually corrected window-of-interest on UVM and the potential role of epicardial UVM in RV cardiomyopathies.

Methods and results: Consecutive patients who underwent endo-epicardial RV mapping with computed-tomography (CT) integration were included. Mapping points were superimposed on short-axis CT slices and correlated with local FT. All points were manually re-analysed and the window-of-interest was adjusted to correct for false high unipolar voltage (UV). For opposite endo-epicardial point-pairs, endo-epicardial bipolar voltage (BV) and UV were correlated for different FT categories. A total of 3791 point-pairs of 33 patients were analysed. In 69% of endocardial points and 63% of epicardial points, the window-of-interest needed to be adjusted due to the inclusion of far-field EGMs, injury current components, or RV-pacing artifacts. The Pearson correlation between corrected endo-epicardial BV and UV was lower for point-pairs with greater FT; however, this correlation was much stronger and less influenced by fat for UV.

Conclusion: At the majority of mapping sites, the window-of-interest needs to be manually adjusted for correct UVM. Unadjusted UVM underestimates low UV regions. Unipolar voltage seems to be less influenced by epicardial fat, suggesting a promising role for UVM in epicardial substrate delineation.

Keywords: Epicardial fat; RV pacing; Right ventricle; Unipolar voltage; Window-of-interest.

MeSH terms

  • Cardiomyopathies*
  • Catheter Ablation* / methods
  • Endocardium
  • Epicardial Mapping / methods
  • Heart Ventricles
  • Humans
  • Tachycardia, Ventricular* / diagnostic imaging